Errata — chapter 8

The smile of stochastic volatility models

8.4.2 Materializing the spot/volatility cross-gamma P&L

The payoff proposed in this section, In?(S/S), once delta-hedged with S and
vega-hegded using log contracts (or VSs) of the payoff’s maturity materializes the
realized covariance of In S; and 54 (t), weighted by (T — t). The total P&L however
also includes the realized variance of 5 (t), since the second derivative (%77123)52 does
not vanish, even though the latter P&L is of order 2 in volatility of volatility.

An alternative measure of spot/volatility covariance

There does exist, however, a payoff that exactly materializes the realized covari-
ance of S; — not In S; - and 52 (t), weighted by (T — t) — with no other spurious
P&Ls.

It is the payoff S'In .S, which we examine in Chapter 3, Section 3.1.9, when we
discuss the vega-hedge of FVAs, that is of cliquets whose vega is proportional to .S;.

The price RT of a SIn S contract of maturity 7 is given by equation 3.19, page
117:
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The mixed derivative %{;{2) is given by:
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Consider a long position in two units of the S'In S contract, risk-managed at the
log-contract implied volatility o7 (t), dynamically delta-hegded and vega-hedged
with log-contracts.

There are no delta and vega P&Ls.

We are vega-hedged and are risk-managing two European payoffs of the same
maturity (S In S and log contract) as the same implied volatility: cancellation of vega
implies cancellation of gamma, and of theta as well.



The only P&L left is thus the S; /7% (t) cross-gamma P&L. Using (8.2), our final
P&L, suitably compounded at 7', reads:
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which can be rewritten as:
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where F;, = S;e("=D(T=%) g the forward at time ¢; for maturity 7.

This result was first obtained by A. Neuberger; see [1] and [2].

Market price of the realized spot/volatility covariance

How much should we charge a client for (the exotic) payoff (8.3)? If the implied
volatility of the S In S contract were equal to that of the log contract, this payoff
would be free. The price P we should charge is thus the market price of the S1n S
contract minus its value calculated using the log-contract implied volatility maturity
oT.

Using expression (8.1) of the price of the S'In S contract as a function of volatility,
we get the market price of the realized spot/volatility covariance in (8.3):
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where FT is the forward for maturity 7.

The implied volatilities of the log contract and SIn.S contract are given by
formulas (4.21), page 142 and (4.22), page 143, as a function of vanilla implied
volatilities:

y2
+oo e 5
~2 _ d ~2
s = Y UK(y)T

s V2w
In () _ oxrVT

K pr—
R
and:
+oo _y2

~ e 2 _

0ims = dy —— k()T
11’1 (%) 8KT\/T

y(K) = = + 3
UKT\/T

Typically, for equity smiles, 551, s < O g, thus P < 0: the implied level of
spot/volatility covariance is negative.
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