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Chapter 1

Introduction

Why would a trader use a stochastic volatility model? What for? Which issues does
one address by using a stochastic volatility model? Why aren’t practitioners content
with just delta-hedging their derivative books? These are the questions we address
in this introduction.

We begin our analysis by reviewing the Black-Scholes model and how it is
used on trading desks. It may come as a surprise to many that, despite the widely
publicized inconsistency between the actual dynamics of �nancial securities, as
observed in reality, and the idealized lognormal dynamics that the Black-Scholes
model postulates, it is still used daily in banks to risk-manage derivative books.

One may think that a model derives its legitimacy and usefulness from the
accuracy with which it captures the historical dynamics of the underlying security
– hence the scorn demonstrated by econometricians and econophysicists for the
Black-Scholes model and its simplistic assumptions, upon �rst encounter. With
regard to models, many are used to a normative thought process. Given the behavior
of securities’ prices – as speci�ed for example by an xx-GARCH or xxx-GARCH
model – this is what the price of a derivative should be. Models not conforming to
such type of speci�cation – or to some canonical set of stylized facts – are deemed
“wrong”.

This would be suitable if (a) the realized dynamics of securities benevolently
complied with the model’s speci�cation and (b) if practitioners only engaged in delta-
hedging. The dynamics of real securities, however, is not regular enough, nor can it
be characterized with su�cient accuracy that the normative stance is appropriate.
Moreover, such an approach skirts the issue of dynamical trading in options – at
market prices – and of marking to market.

Rather than calibrating their favorite model to historical data for the spot process,
and, armed with it and trusting its seaworthiness, endeavor to ride out the rough seas
of �nancial markets, derivatives practitioners will be content with barely �oating
safely and making as few assumptions as possible about future market conditions.

Still, this requires some modeling infrastructure – hence this book: while they do
not use the models’ predictive power and may have little con�dence in the reliability
of the models’ underlying assumptions, practitioners do need and make use of the
models’ pricing equations. This is an important distinction: while the Black-Scholes
model is not used on derivatives desks, everybody uses the Black-Scholes pricing
equation.
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2 Stochastic volatility modeling

Indeed, a pricing equation is essentially an analytical accounting device: rather
than predicting anything about the future dynamics of the underlying securities,
a model’s pricing equation supplies a decomposition of the pro�t and loss (P&L)
experienced on a derivative position as time elapses and securities’ prices move
about. It allows its user to anticipate the sign and size of the di�erent pieces in
his/her P&L. We will illustrate this below with the example of the Black-Scholes
equation, which could be motivated by elementary break-even accounting criteria.

More sophisticated models enable their users to characterize more precisely
their P&L and the conditions under which it vanishes, for example by separating
contributions from di�erent e�ects that may be lumped together in simpler models.
Again, the issue, from a practitioner’s perspective, is not to be able to predict anything,
but rather to be able to di�erentiate risks generated by these di�erent contributions
to his/her P&L and to ensure that the model o�ers the capability of pricing these
di�erent types of risk consistently across the book at levels that can be individually
controlled.

It is then a trading decision to either hedge away some of these risks, by taking
o�setting positions in more liquid – say vanilla – options or by taking o�setting
positions in other exotic derivatives, or to keep these risks on the book.

1.1 Characterizing a usable model – the Black-Scholes equa-
tion

Imagine we are sitting on a trading desk and are tasked with pricing and risk-
managing a short position in an option – say a European option of maturity T whose
payo� at t = T is f(ST ), where S is the underlying.

The bank quants have coded up a pricing function: P (t, S) is the option’s price
in the library model. Assume we don’t know anything about what was implemented.
How can we assess whether using the black-box pricing function P (t, S) for risk-
managing a derivative position is safe, that is whether the library model is usable?

We assume here that the underlying is the only hedging instrument we use. The
case of multiple hedging instruments is examined next.

• The �rst sanity check we perform is set t = T and check that P equals the
payo�:

P (t = T, S) = f(S), ∀S. (1.1)

Provided (1.1) holds, we proceed to consider the P&L of a delta-hedged position.
For the purpose of splitting the total P&L incurred over the option’s lifetime into
pieces that can be ascribed to each time interval in between two successive delta
rehedges, we can assume that we sell the option at time t, buy it back at t+ δt then
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Introduction 3

start over again. δt is typically 1 day. Let ∆ be the number of shares we buy at t as
delta-hedge.

Our P&L consists of two pieces: the P&L of the option itself, of which we are
short, which comprises interest earned on the premium received at t, and the P&L
generated by the delta-hedge, which incorporates interest we pay on money we
have borrowed to buy ∆ shares, as well as money we make by lending shares out
during δt:

P&L = − [P (t+ δt, S + δS)− P (t, S)]+rP (t, S) δt + ∆(δS− rSδt+ qSδt)

where δS is the amount by which S moves during δt. r is the interest rate and q the
repo rate, inclusive of dividend yield.

How should we choose ∆? We pick ∆ = dP
dS so as to cancel the �rst-order term

in δS in the P&L above.
We now expand the P&L in powers of δS and δt. We would like to stop at the

lowest non-trivial orders for δt and δS: order one in δt, and order two in δS, as the
order one contribution is canceled by the delta-hedge. What about cross-terms such
as δSδt?

In practice, this term, as well as higher order terms in δS, are smaller than
δS2 and δt terms. Indeed, to a good approximation, the variance of returns scales
linearly with their time scale, thus

〈
δS2

〉
is of order δt and δS is of order

√
δt.1 The

contributions at order one in δt and order two in δS are then both of order δt while
the cross-term δSδt and terms of higher order in δS are of higher order in δt, thus
become negligible as δt→ 0.2

We then get the following expression for our carry P&L – the standard denomi-
nation for the P&L of a hedged option position:

P&L = −
(
dP

dt
− rP + (r − q)S dP

dS

)
δt − 1

2
S2 d

2P

dS2

(
δS

S

)2

(1.2)

• The �rst piece – called the theta portion – is deterministic. It is given by the
time derivative of the option’s price (sometimes theta is used to denote dP

dt
only), corrected for the �nancing cost/gain during δt of the delta hedge and
the premium.

1The property that the variance of returns scales linearly with their time scale is equivalent to the
property that returns have no serial correlation. Securities’ returns do in fact exhibit some amount of
serial correlation at varying time scales, of the order of several days down to shorter time scales and this is
manifested in the existence of “statistical arbitrage” desks. Serial correlation in itself is of no consequence
for the pricing of derivatives, however the measure of realized volatility will depend on the time scale of
returns used for its estimation. As will be clear shortly, for a derivatives book, the relevant time scale is
that of the delta-hedging frequency.

2How small should δt be so that this is indeed the case? The order of magnitude of δS is Sσ
√
δt

where σ is the volatility of S. It turns out that for equities, volatility levels are such that for δt = 1 day,
higher order terms can usually be ignored. There is nothing special about daily delta rebalancing; for
much higher volatility levels, intra-day delta re-hedging would be mandatory.
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4 Stochastic volatility modeling

• The second piece is random and quadratic in δS, as the linear term is cancelled
by the delta position. d

2P
dS2 is called “gamma”. We usually prefer to work with

the “dollar gamma” S2 d2P
dS2 , as it has the same dimension as P .

Our daily P&L reads:

P&L = −A (t, S) δt−B (t, S)

(
δS

S

)2

(1.3)

where A =
(
dP
dt − rP + (r − q)S dPdS

)
and B = 1

2S
2 d2P
dS2 . Because the second

piece in the P&L is random we cannot demand that the P&L vanish altogether.

• What if A ≥ 0 and B ≥ 0? We lose money, regardless of the value of δS.
This means P cannot be used for risk-managing our option. The initial price
P (t = 0, S0) we have charged is too low. We should have charged more so as
not to keep losing money as we delta-hedge our option.

• What if A ≤ 0 and B ≤ 0? We make “free” money, regardless of δS. While
less distressing than persistently losing money, the consequence is identical:
P cannot be used for risk-managing our option. The initial price P (t = 0, S0)
we have charged is too high.

• The model is thus usable only if the signs ofA (t, S) andB (t, S) are di�erent,
∀t, ∀S. The values of δSS such that money is neither made nor lost are δS

S =

±
√
−A(t,S)
B(t,S)

√
δt.

This condition is necessary, otherwise the model is unusable. We now introduce
a further reasonable requirement.

While daily returns are random, empirically their squares average out over time
to their realized variance. Let us call σ̂ the (lognormal) historical volatility of S:〈 (

δS
S

)2 〉
= σ̂2δt. Requiring that we do not lose or make money on average is a

natural risk-management criterion – it reads: A (t, S) = −σ̂2B (t, S), ∀S, ∀t.

• Replacing A and B with their respective expression yields the following
identity that Pσ̂ ought to obey:

dPσ̂
dt
− rPσ̂ + (r − q)S dPσ̂

dS
= − σ̂2

2
S2 d

2Pσ̂
dS2

(1.4)

where subscript σ̂ keeps track of the dependence of P on the break-even level of
volatility σ̂.

Plugging now in (1.2) the expression for (dPdt − rP + (r − q)S dPdS ) in (1.4)
yields:

P&L = −S
2

2

d2Pσ̂
dS2

(
δS

S2

2

− σ̂2δt

)
(1.5)
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Introduction 5

The condition for the two pieces in the P&L to o�set each other is then expressed
very simply as a condition on the realized variance of S: the P&L will be positive or
negative depending upon whether δS2

S2 is larger or smaller than σ̂2δt.
In the absence of a volatility market for S, σ̂ should be chosen as our best estimate

of future realized volatility, weighted by the option’s dollar gamma.3
For vanilla options that can be bought or sold at market prices we can de�ne the

notion of implied volatility – hence the hat: σ̂ is such that Pσ̂ is equal to the market
price of the option considered.

(1.4) is in fact the Black-Scholes equation. Together with condition (1.1) it de�nes
Pσ̂ (t, S).

Starting from expression (1.2) for our P&L and imposing the basic accounting
criterion that the P&L vanish for

(
δS
S

)2
= σ̂2δt, at order one in δt and two in δS,

a (gifted) trader would thus have obtained the Black-Scholes pricing equation (1.4),
though he may not have known anything about Brownian motion and may have
been reluctant to assume that real securities are lognormal. The Black-Scholes model
is typical of the market models considered in this book:

• there exists a well-de�ned break-even level for
(
δS
S

)2 such that the P&L at
order two in δS of a delta-hedged position vanishes,

• this break-even level does not depend on the speci�c payo� of the option at
hand.

This last condition is important: should the gamma of an options portfolio vanish
– that is the portfolio is locally riskless – then theta should vanish as well. If break-
even levels were payo�-dependent, we could possibly run into one of the two absurd
situations considered above, with B = 0 and A 6= 0, at the portfolio level.

A model not conforming to these criteria is unsuitable for trading purposes.4

Multiple hedging instruments
What if our pricing function is a function of several asset values: P (t, S1 . . . Sn)

where the Si are market values of our hedge instruments – either di�erent underly-
ings, or one underlying and its associated vanilla options?

3This is not exactly true. Equation (1.5) shows that the situation is di�erent depending on whether
our position is short gamma

(
d2P
dS2 > 0

)
or long gamma

(
d2P
dS2 < 0

)
. In the short gamma situation, our

gain is bounded while our loss is potentially unbounded – the reverse is true in the long gamma situation:
our bid/o�er levels for σ̂ will likely be shifted with respect to an unbiased estimate of future realized
volatility.

4We may have more complex requirements, for example that our P&L vanishes on average, inclusive
of P&Ls generated by stress-tests scenarios, or inclusive of a tax levied by the bank on our desk to cover
losses generated by these stress test-scenarios. This leads to a di�erent pricing equation than (1.4) – see
Appendix A of Chapter 10, page 407.

Exceptions to the rule that break-even levels should not depend on the payo� occur if we explicitly
demand that σ̂ be an increasing function of S2 d

2Pσ̂
dS2 , to ensure that, for larger gammas, the ratio of

theta to gamma is increased, for the sake of conservativeness, with the deliberate consequence that the
resulting model is non-linear. One example is the Uncertain Volatility Model, covered in Appendix A of
Chapter 2.
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6 Stochastic volatility modeling

Running through the same derivation that led to (1.3), the P&L in the multi-asset
case reads:

P&L = −A (t, S) δt− 1

2
Σijφij(t, S)

δSi
Si

δSj
Sj

(1.6)

where φij(t, S) = SiSj
d2P

dSidSj

∣∣∣
t,S

and S denotes the vector of the Si.
Let us diagonalize φ, a real symmetric matrix, and denote by ϕk its eigenvalues

and Tk the associated eigenvectors. Also denote by ϕ the diagonal matrix with the
ϕk on its diagonal. We have:

φ = TϕT ᵀ

The gamma portion of our P&L can be rewritten as:

Σijφij
δSi
Si

δSj
Sj

= UᵀφU = UᵀTϕT ᵀU = (T ᵀU)ᵀϕ(T ᵀU) = Σkϕkδzk
2

where Ui = δSi
Si

and δzk = T ᵀ
k U . Our P&L now reads:

P&L = −Aδt− 1

2
Σkϕkδzk

2

which is a sum of P&Ls of the type in (1.3).
The δzk are variations of particular baskets of the hedge instruments Si. These

baskets can be considered our e�ective hedge instruments, since the Tk form a basis.
δzk

2 is always positive. As in the mono-asset case, the condition for our model
to be usable is that there exist n positive numbers ωk such that:

A = −1

2
Σkϕkωk (1.7)

so that our P&L reads:

P&L = −1

2
Σkϕk

(
δzk

2 − ωkδt
)

Let us express A di�erently, so as to give our P&L in (1.6) a more symmetrical
form. Denote by ω the diagonal matrix with the ωk on the diagonal. We have:

A = −1

2
Σkϕkωk = −1

2
tr(ϕω) = −1

2
tr(T ᵀφTω) = −1

2
tr (φTωT ᵀ) = −1

2
tr (φC)

= −1

2
ΣijφijCij

where C = TωT ᵀ is a positive matrix by construction, as the ωk are positive.
Our P&L then reads:

P&L = −1

2
Σijφij

(
δSi
Si

δSj
Sj
− Cijδt

)
(1.8)
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Introduction 7

Because C is a positive matrix, it can be interpreted as an (implied) covariance
matrix; its elements are implied covariance break-even levels.

We have just shown that on the condition that our model is usable, there exists
a positive break-even covariance matrix C such that our P&L reads as in (1.8).

In our construction C is given by: C = TωT ᵀ, based on expression (1.7) forA. Is
this restrictive, or is P&L (1.8) guaranteed to be nonsensical, for any positive matrix
C? The answer is yes.5

Conclusion
In the general case of multiple hedge instruments, the condition that our model

is usable – no situation in which our carry P&L is systematically positive or negative
– is that there exists a positive break-even covariance matrix C(t, S), ∀S, ∀t, such
that the model’s theta and cross-gammas are related through:

A = −1

2
ΣijφijCij

Again, a model not meeting this criterion is unsuitable for trading purposes. In the
sequel, suitable models are also called market models.

The important thing here is that cross-gammas φij involve derivatives with
respect to values of actual hedge instruments, not model-speci�c state variables.

We will see in Chapter 2 that the local volatility model is a market model, in
Chapter 7 that forward variance models are market models, and in Chapter 12 that
most local-stochastic volatility models are not.

Specifying a break-even condition for the carry P&L at order 2 in δS leads to
pricing equation (1.4). It so happens that the latter – a parabolic equation – has a
probabilistic interpretation: the solution can be written as the expectation of the
payo� applied to the terminal value of a stochastic process for St that is a di�usion:
dSt = (r − q)Stdt+ σ̂SdWt.

The argument goes this way and not the other way around – modeling in �nance
does not start with the assumption of a stochastic process for St and has little to do
with Brownian motion.

Expression (1.5) is a useful accounting tool – and the Black-Scholes equation
(1.4) can be used to risk-manage options – despite the fact that real securities are
not lognormal and do not exhibit constant volatility.

5Assume our P&L reads as in (1.8) with C an arbitrary positive matrix. We have:

A = −
1

2
tr(φC) = −

1

2
tr (TϕT ᵀC) = −

1

2
tr (ϕT ᵀCT ) = −

1

2
Σkϕk

(
T ᵀ
kCTk

)
= −

1

2
Σkϕkαk

where αk = T ᵀ
kCTk are positive numbers as C is positive. C can thus be any positive matrix.
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8 Stochastic volatility modeling

1.2 How (in)e�ective is delta hedging?
Expression (1.5) quanti�es the P&L of a short delta-hedged option position. The

aim of delta-hedging is to reduce uncertainty in our �nal P&L – it removes the
linear term in δS: is this su�cient from a practical point of view? How large is
the gamma/theta P&L (1.5)? More precisely, how large is the average and standard
deviation of the total P&L incurred over the option’s life?

It can be shown – this is the principal result of the Black-Scholes-Merton analysis
– that:

• if the underlying security indeed follows a lognormal process with the same
volatility σ as that used for pricing and delta-hedging the option; that is, S
follows the Black-Scholes model with volatility σ

• and if we take the limit of very frequent hedging: δt→ 0

then the sum of P&Ls (1.5) incurred over the option’s life vanishes with probability 1.

In real life delta-hedging occurs discretely in time, typically on a daily basis, and
real securities do not follow di�usive lognormal processes. Thus, the sum of P&Ls
(1.5) over the option’s life will not vanish. Already in the lognormal case, if S follows
a lognormal process but with a di�erent volatility – say higher – than the implied
volatility σ̂, the sum of P&Ls (1.5) will not vanish in the limit δt→ 0.

Obviously, the condition that the �nal P&L vanishes on average requires that
the implied volatility σ̂ used for pricing and risk-managing the option match on
average the future realized volatility weighted by the option’s dollar gamma over
the option’s life:〈∫ T

0

e−rtS2 d
2Pσ̂
dS2

σ2
t dt

〉
=

〈∫ T

0

e−rtS2 d
2Pσ̂
dS2

σ̂2dt

〉

where σt is the instantaneous realized volatility de�ned by: σ2
t δt =

δS2
t

S2
t

and the
discount factor e−rt is used to convert P&L generated at time t into P&L at t = 0.

Throughout this book, we use 〈 〉 to denote either an average or a quadratic
(co)variation – context should dispel any ambiguity as to which is intended.

Let us assume that this condition holds, so that our �nal P&L is not biased on
average and let us concentrate on the dispersion – the standard deviation – of the
�nal P&L. It vanishes in the Black-Scholes case with continuous hedging. How large
is it, �rst in the Black-Scholes case with discrete hedging and then in the case of
discrete hedging with real securities?
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Introduction 9

Assume that the option is delta-hedged daily at times ti: δt = 1 day. The total
P&L over the option’s life, discounted at time t = 0, is:

P&L = −
∑
i

e−rti
S2
i

2

d2Pσ̂
dS2

(ti, Si)
(
r2
i − σ̂2δt

)
(1.9)

where ri are daily returns, given by ri = Si+1−Si
Si

. As expression (1.9) shows, at
order 2 in δS and order 1 in δt, the total P&L is given by the sum of the di�erences
between realized daily quadratic variation δS2

i

S2
i

and the implied quadratic variation

σ̂2δt, weighted by the prefactor e−rti S
2
i

2
d2Pσ̂
dS2 (ti, Si), which is payo�-dependent

and involves the gamma of the option. σ̂ is the implied volatility we are using to
risk-manage our option position.

Let us make the approximation that the option’s discounted dollar gamma
e−rtiS2 d

2Pσ̂
dS2 is a constant, equal to its initial value S2

0
d2Pσ̂
dS2 (t0, S0) – this removes

one source of randomness in the P&L.6 The standard deviation of the total P&L
depends on the variances of individual daily P&Ls as well as on their covariances.
Let us write the daily return ri as:

ri = σi
√
δtzi (1.10)

where σi is the realized volatility for day i, and zi is centered and has unit variance:
〈zi〉 = 0,

〈
z2
i

〉
= 1. Let us assume that the zi are iid and are independent of the

volatilities σi.

Because the zi are independent, returns ri have no serial correlation but are
not independent, as daily volatilities σi may be correlated. Expression (1.10) allows
separation of the e�ects of the scaleσi of return ri on one hand, and of the distribution
of ri – which up to a rescaling is given by that of zi – on the other hand. Our total
P&L now reads:

P&L = −S
2
0

2

d2Pσ̂
dS2

(t0, S0)
∑
i

(
σ2
i z

2
i − σ̂2

)
δt

Let us assume that the process for the σi is time-homogeneous so that, in par-
ticular,

〈
σ2
i

〉
does not depend on i and let us take σ̂2 =

〈
σ2
i

〉
. The variance of

6There exists actually a European payo� whose discounted dollar gamma is constant and equal to 1.
It is called the log contract and pays at maturity −2 lnS; see Section 3.1.4.
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10 Stochastic volatility modeling∑
i

(
σ2
i z

2
i − σ̂2

)
δt is given by:

〈∑
ij

(σ2
i z

2
i − σ̂2)δt (σ2

j z
2
j − σ̂2)δt

〉
=
∑
i

(〈
σ4
i z

4
i

〉
+ σ̂4 − 2σ̂4

)
δt2 +

∑
i6=j

〈
σ2
i σ

2
j z

2
i z

2
j + σ̂4 − 2σ̂4

〉
δt2

=
∑
i

(2 + κ) σ̂4δt2 +
∑
i 6=j

(
〈
σ2
i σ

2
j

〉
− σ̂4)δt2

=
∑
i

(2 + κ) σ̂4δt2 + (
〈
σ4
〉
− σ̂4)

∑
i 6=j

fijδt
2

= σ̂4
(∑

i

(2 + κ) δt2 + Ω
∑
i 6=j

fijδt
2
)

(1.11)

where we have introduced the (excess) kurtosis κ of returns ri and the vari-
ance/variance correlation function f de�ned by:

κ =

〈
σ4
i z

4
i

〉
σ̂4

− 3, fij =

〈
(σ2
i − σ̂2)(σ2

j − σ̂2)
〉√

〈σ4
i 〉 − σ̂4

√〈
σ4
j

〉
− σ̂4

and where the dimensionless factor Ω, which quanti�es the variance of daily vari-
ances σ2

i is given by:

Ω =

〈
σ4
〉
− σ̂4

σ̂4
=

〈
σ4
〉
−
〈
σ2
〉2

〈σ2〉2

We then get:

StDev (P&L) =

∣∣∣∣S2
0

2

d2Pσ̂
dS2

(t0, S0)

∣∣∣∣√σ̂4
(∑

i

(2 + κ) δt2 + Ω
∑
i 6=j

fijδt2
)

It is useful to measure the standard deviation of the �nal P&L in units of the
option’s vega, the sensitivity of the option’s price to the implied volatility σ̂. In the
Black-Scholes model, for European options the following relationship linking vega
and gamma holds:

dPσ̂
dσ̂

= S2 d
2Pσ̂
dS2

σ̂T (1.12)

where T is the residual option’s maturity – this is derived in Appendix A of Chapter
5, page 181. Using now the vega, the �nal expression for the standard deviation of
the P&L is:

StDev (P&L) =

∣∣∣∣σ̂ dPσ̂dσ̂
∣∣∣∣ 1

2T

√∑
i

(2 + κ) δt2 + Ω
∑
i 6=j

fijδt2 (1.13)



w
w

w
.lo

re
n

zo
b

er
g

o
m

i.c
o

m

Introduction 11

1.2.1 The Black-Scholes case

Let us �rst assume that S follows the lognormal Black-Scholes dynamics. σi is
constant, equal to σ̂, hence Ω = 0. Since σi

√
δt is small (δt is one day and typically

σi = 20%, so that σi
√
δt ' 0.01), daily returns can be considered Gaussian: κ = 0.

Σi (2 + κ) δt2 = 2T 2

N , where T is the option’s maturity and N is the number of
delta rehedges: Nδt = T . Expression (1.13) becomes:

StDev (P&L) =
1√
2N

∣∣∣∣σ̂ dPσ̂dσ̂
∣∣∣∣ (1.14)

Thus, provided it is small, the standard deviation of our �nal P&L is equivalent
to the impact on the option’s price of a relative perturbation of σ̂ of size 1√

2N
.

Note that σ̂√
2N

is approximately the standard deviation of the historical volatility
estimator. The standard variance estimator is given by:

σ2 =
1

Nδt

∑
i

(
Si+1 − Si

Si

)2

In the Black-Scholes case, for daily returns, Si+1−Si
Si

is approximately Gaussian and
we have:

σ2 ' σ̂2

N

∑
i

z2
i

where zi are standard normal random variables. The variance of σ2 is 2σ̂4

N , thus the
relative standard deviation StDev

(
σ2
)
/
〈
σ2
〉

is
√

2
N and, if it is not too large, the

relative standard deviation of the volatility estimator σ is approximately half of this,
that is 1√

2N
.

The standard deviation observed on our �nal P&L is then approximately given
by the option’s vega multiplied by the standard deviation of the volatility estimator
built on the same schedule as that of the delta rehedges.

Consider the example of a one-year at-the-money call option, with σ̂ = 20%,
vanishing interest rates, repo and dividends, and S = 1. The option’s price is
then P = 7.97%. There are about 250 trading days in one year, which gives

1√
2N
' 0.045. An at-the-money option has the property that its price is approxi-

mately linear in σ̂ for short maturities: Pσ̂ ' 1√
2π
Sσ̂
√
T , thus σ̂ dPσ̂dσ̂ ' P (using

this approximation yields a price of 7.98%).
We then get for the one-year at-the-money option: StDev(P&L) ' 0.045P : the

standard deviation of our �nal P&L is about 5% of the option’s price we charged at
inception.

5% of the premium charged for the option – or equivalently 5% of the volatility –
may seem a very reasonable risk to take. Alternatively, adjusting the option’s price
to account for one standard deviation of our �nal P&L would result in a relative
bid/o�er spread on the option price of about 10%.
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12 Stochastic volatility modeling

1.2.2 The real case

In real life, in contrast to the Black-Scholes case, the second term in the square
root in (1.13) does not vanish. It involves the variance/variance correlation function
fij . We have made the (reasonable) assumption that the process for the σi is time-
homogeneous: fij is then a function of the di�erence j − i, actually a function of
|j − i|.

As δt is small compared to the option’s maturity, we convert the sums in (1.11)
into integrals:

∑
ij

fijδt
2 '

∫ T

0

du

∫ T

0

dtf (t− u) = 2

∫ T

0

(T − τ) f (τ) dτ

We now have from (1.13):

StDev (P&L) '
∣∣∣∣σ̂ dPσ̂dσ̂

∣∣∣∣ 1

2T

√
(2 + κ)

T 2

N
+ 2Ω

∫ T

0

(T − τ) f (τ) dτ

=

∣∣∣∣σ̂ dPσ̂dσ̂
∣∣∣∣
√

2 + κ

4N
+

Ω

2T 2

∫ T

0

(T − τ) f (τ) dτ (1.15)

Let us now examine the two contributions to StDev(P&L).
Imagine �rst that daily variances are constant: Ω vanishes and the �rst piece

alone contributes to the standard deviation of the P&L. Just as in the Black-Scholes
case (equation (1.14)), the variance of the �nal P&L scales like 1/N , where N is
the number of daily rehedges, which is natural as the �nal P&L is the sum of N
identically distributed and independent daily P&Ls.

In contrast to the Black-Scholes case though, in which daily returns are approxi-
mately Gaussian, the e�ect of the tails of the distribution of daily returns appears
through the kurtosis κ. By setting κ = 0 we recover result (1.14).

Consider now the second contribution in (1.15). The prefactor Ω quanti�es
the dispersion of daily variances while f (τ) quanti�es how a �uctuation in daily
variance σ2

i on day ti impacts daily variances σ2
i+τ on subsequent days. If f decays

slowly, daily variances will be very correlated: in case one daily variance was higher
than σ̂, daily variances for the following days are likely to be higher as well, resulting
in daily gamma/theta P&Ls all having the same sign – thus generating strong
correlation among daily P&Ls and increasing the variance of our �nal P&L.

For example, assume that daily variances are perfectly correlated: f (τ) = 1. The
second piece in (1.15) is then simply equal to Ω

4 . If Ω is small, the contribution of
this term is then equivalent to the impact of a relative displacement of σ̂ by σ̂

√
Ω

2 ,
regardless of the number N of daily rehedges.7

7The case f (τ) = 1 is unrealistic in that daily variances are random, but are all identical: the
underlying security follows a lognormal dynamics with a constant volatility whose value is drawn
randomly at inception.
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Introduction 13

Estimating f(τ) ,Ω, κ
Consider now the dynamics of daily variances σi in the case of real securities.

Separating in ri the contributions from σi and zi is di�cult if the only daily data we
have are daily returns. In what follows we have estimated daily volatilities σi using 5-
minute returns: σi is given by the square root of the sum of squared 5-minute returns
during the exchange’s opening hours, plus the square of the close-to-open return.
Figure 1.1 shows the autocorrelation function f averaged over a set of European
�nancial stocks, evaluated on a two-year sample: [August 2008, August 2010].8

-20% 

0% 

20% 

40% 

60% 

80% 

100% 

0 50 100 150 200 

  Actual 

  Exponential fit: 1/k = 45 days 

Figure 1.1: Correlation function f(τ) of daily volatilities evaluated on a basket of
�nancial stocks. τ is in business days.

For τ = 0, f(τ) = 1. As is customary with correlation functions, however,
limτ→0 f (τ) 6= 1, and the discontinuity in τ = 0 quanti�es the signal-to-noise
ratio of our measurement of daily volatilities. As Figure 1.1 shows, this discontinuity
is rather moderate and we get a robust estimation of the autocorrelation of daily
volatilities up to time scales τ ' 100 days.

For larger τ , Figure 1.1 displays negative autocorrelations: this is unphysical and
most likely due to the fact that, over our historical sample (2 years), for τ > 100 days,
i and i+ τ fall into two di�erent regimes of respectively low and high volatilities.

We have also graphed in Figure 1.1 an exponential �t to f : f (τ) = ρe−kτ ,
with ρ = 0.78 and 1

k = 45 days. The agreement of f with the exponential form is
acceptable in the region τ < 100 days, where our measurement is reliable.

Using this form for f (τ) yields our �nal expression for the standard deviation
of the P&L:

StDev (P&L)∣∣∣σ̂ dPσ̂dσ̂ ∣∣∣ '

√
2 + κ

4N
+
ρΩ

2

kT − 1 + e−kT

(kT )2
(1.16)

8I am grateful to Benoît Humez for generating these data as well as estimates of Ω.
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14 Stochastic volatility modeling

Ω quanti�es the relative variance of daily variances σ2
i . It varies appreciably,

even among stocks of the same sector: a typical range for Ω is [1.5, 4]. Let us use
the value Ω = 2.

Estimating the unconditional kurtosis κ is also di�cult, as the 4th order moment
of daily returns converges slowly, so slowly that it is unreasonable to assume that
the same regime of kurtosis holds throughout the historical sample used for its
estimation: a typical order of magnitude is κ = 5.

1.2.3 Comparing the real case with the Black-Scholes case

We now use the typical values for Ω, κ, ρ, k estimated above in expression (1.16).
Figure 1.2 shows the right-hand side of equation (1.16), that is the relative displace-
ment of σ̂ that produces a variation of the option’s price P equal to one standard
deviation of the P&L. For an at-the-money option, whose price is approximately
linear in σ̂, this number is also the ratio of one standard deviation of the P&L to the
option’s price itself.

Figure 1.2: Right-hand side in equation 1.16 (darker line), as a function of maturity,
compared to the same quantity, but without the kurtosis term (dashed line), and the
lognormal case (lighter line).

Figure 1.2 also displays the same quantity, but without the term 2+κ
4N , to remove

the e�ect of the tails of the daily returns, as well as the standard deviation of the
P&L in the lognormal, Black-Scholes case (1.14).

We can see that the standard deviation of the �nal P&L of a delta-hedged option
in the real case is much larger than its estimation in the Black-Scholes case.

Consider again the example of a 1-year at-the-money option, with σ̂ = 0.2, with
P = 7.97%. As Figure 1.2 shows, while in the Black-Scholes case, the standard
deviation is 4.5% of the option’s price, that is 0.35%, in the real case, for a 1-year
maturity it is equal to 35% of the option’s price, that is 2.8%.
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Introduction 15

Comparison of the dark and dashed lines in Figure 1.2 shows that, but for very
short maturities, the dispersion of the P&L is mostly generated by correlation of
daily volatilities rather than the thickness of the tails of daily returns.

Delta-hedging our one-year at-the-money option position exposes us to the risk
of making or losing about one third of the option premium9 – this is an unreasonable
risk to take considering that, typically, commercial fees charged by banks on option
transactions are much smaller than the option’s value.

The conclusion is that, in real life, delta-hedging is not su�cient: while delta-
hedging removes the linear term in δS in our daily P&L, the e�ect of the δS2 term
is still too large: the only way to remove it is to use other options – for example
vanilla options – to o�set the gamma of the option we are risk-managing.

This was expressed bluntly to the author upon starting his career in �nance by
Nazim Mahrour, an FX option trader: “options are hedged with options”.

1.3 On the way to stochastic volatility
Let us then use other options to o�set the gamma of the exotic option we are

risk-managing: assume for simplicity that we use a single vanilla option, whose
implied volatility is σ̂O . The P&L of a delta-hedged position in the vanilla option O
has the same form as in equation (1.5), except it involves the implied volatility σ̂O :

P&LO = −S
2

2

d2O

dS2

(
δS2

S2
− σ̂2

Oδt

)
(1.17)

The number λ of vanilla options O we are buying as gamma hedge is :

λ =
1
d2O
dS2

d2P

dS2
(1.18)

The gamma pro�les of P and O are unlikely to be homothetic, thus this gamma
hedge will be e�cient only locally; as time elapses and S moves, we need to readjust
the hedge ratio λ.

We could decide to risk-manage each option P and O with its own implied
volatility σ̂ and σ̂O , but this leads to incongruous carry P&Ls.

Indeed by selecting λ as speci�ed in (1.18) we cancel the gamma of the hedged
position. The P&Ls of options O and P are both of the form in (1.17). If σ̂ 6= σ̂O , the
theta portion of our global P&L does not vanish, even though gamma vanishes, a
situation as nonsensical as those encountered in Section 1.1, when A and B have
the same sign – see also the discussion in Section 2.8 below.

9Remember that we have made the unrealistic assumption that we were able to predict the average
realized volatility. Uncertainty about the future average level of realized volatility would push the standard
deviation of our �nal P&L even higher.
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16 Stochastic volatility modeling

We must thus choose σ̂ = σ̂O . We now have for P a pricing function that
explicitly depends on two dynamical variables: S and σ̂O :

P (t, S, σ̂O)

which is natural as we are using two instruments as hedges.

This is an elementary instance of calibration: we decide to make our exotic
option’s price a function of other derivatives’ prices. It is a trading decision.

In the unhedged case we were free to chose the implied volatility σ̂ as our best
estimate of future realized volatility and kept it constant throughout: no P&L was
generated by the variation of σ̂.

Unlike σ̂, however, σ̂O is a market implied volatility and cannot be kept constant.
As S moves and time �ows we readjust λ, thus buying or selling the vanilla option
at prevailing market prices: σ̂O will move so as to re�ect the market price O of the
vanilla option. Daily P&Ls for O and P will include extra terms involving δσ̂O . At
second order in δσ̂O :

P&LO = −S
2

2

d2O

dS2

(
δS2

S2
− σ̂2

Oδt

)
− dO

dσ̂O
δσ̂O −

1

2

d2O

dσ̂2
O

δσ̂2
O −

d2O

dSdσ̂O
δSδσ̂O

(1.19)
The expansion of the P&L of the hedged position at second order in δS, δσ̂O and

order 1 in δt reads:

P&L = −
(
dP

dσ̂O
− λ dO

dσ̂O

)
δσ̂O (1.20)

− 1

2

(
d2P

dσ̂2
O

− λd
2O

dσ̂2
O

)
δσ̂2
O −

(
d2P

dSdσ̂O
− λ d2O

dSdσ̂O

)
δSδσ̂O

This is an accounting equation: the P&L generated by these three terms is no
less real than the usual gamma/theta P&L – it is usually called mark-to-market P&L,
while the gamma/theta P&L is typically called carry P&L.10

There is no contribution from δS2 as d2P
dS2 = λd

2O
dS2 by construction. Exotic

options are typically path-dependent options: their �nal payo� is a function of
values of S observed at discrete dates, speci�ed in the option’s term sheet. Between
two observation dates, the pricing equation for P in the Black-Scholes framework is
the same as that of a European option. Since P and O are given by a Black-Scholes
pricing equation with the same implied volatility σ̂O , cancellation of gamma implies
cancellation of theta as well: there is no δt term in (1.20).

Consider the last two terms in δσ̂2
O and δSδσ̂O in (1.19) and (1.20). While their

contributions to P&LO and P&L look similar, they have a di�erent status and have
to be treated di�erently. Expression (1.19) is the P&L of a vanilla option position.

10The distinction between mark-to-market and carry P&L is somewhat arbitrary. Usually mark-to-
market P&L refers to P&L generated by the variation of parameters that were supposed to stay constant
in the pricing model: typically, in the Black-Scholes model a change in σ̂ generates mark-to-market P&L.
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Introduction 17

The extra terms that come in addition to the gamma/theta P&L do not warrant
any adjustment to the price of the vanilla option: their contribution to the P&L is
already priced-in in the market price of the vanilla option.

In expression (1.20), however, what appear as prefactors of δσ̂2
O and δSδσ̂O are

the second-order sensitivities of the hedged position. We then need to adjust the
price P (t, S, σ̂O) of our exotic option for the cost of these two contributions to
the P&L.

What matters in the evaluation of extra-model cost is not so much the second-
order sensitivities of the naked exotic option, but the residual sensitivities of the
hedged position.

Three observations are in order:

• We now have a vega term in δσ̂O . If P is a European option with the same
maturity as O, the vega of a gamma-hedged position cancels out, owing to
relationship (1.12) linking gamma and vega in the Black-Scholes model. A
European payo� is statically hedged with a portfolio of vanilla options of the
same maturity; it can hardly be called an exotic derivative.
The situation we have in mind is that of real exotics that has no static hedge,
whose hedge portfolio comprises vanilla options of di�erent maturities: gamma
cancellation does not imply vega cancellation. Depending on the relative sizes
of the gamma and vega risks we may prefer to gamma-hedge or vega-hedge
our exotic option: this is a trading decision. In practice an exotics book is a
large caldron where mitigation of the gamma and vega risks of many di�erent
exotic and vanilla options takes place: gamma and vega hedging, unachievable
on a deal-by-deal basis, can be reasonably achieved at the book level.11

• Our P&L does not involve realized volatility anymore. Instead, we have ac-
quired sensitivity to σ̂O . While in the unhedged case we were exposed to
realized volatility, we are now exposed to the dynamics of the implied volatil-
ity σ̂O .12

• Unlike in the unhedged case for the δS2 term, no deterministic δt term is
now o�setting the δσ̂2

O and δSδσ̂O terms: depending on their realized values
and the signs of their prefactors, we may systematically make or lose money.
This is a serious issue. While in the Black-Scholes pricing equation we had
a parameter – the implied volatility – to control how the gamma and theta
terms for the spot o�set each other, we have no equivalent parameter at our
disposal to control break-even levels for gammas on σ̂O : no implied volatility
of σ̂O and no implied correlation of S and σ̂O . P and O should then be given
by a di�erent pricing equation than Black-Scholes’, that explicitly includes

11Client preferences, pressure from the salesforce, unwillingness of other counterparties to take on
exotic risks, may lead an exotics desk to pile up one-way risk. In normal circumstances, though, as
exposure to a particular risk builds up, traders will be willing to quote aggressive prices for payo�s that
o�set this risk so as to keep the overall risk levels of the book under control.

12This is not exactly true – there remains a residual sensitivity to realized volatility in the covariance
term δSδσ̂O .
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18 Stochastic volatility modeling

these new parameters so as to generate additional theta terms in the P&L: this
is the general task of stochastic volatility models.13

The general conclusion is that by using options as hedges we lower – or cancel
– our exposure to realized volatility, but acquire an exposure to the dynamics of
implied volatilities. However, while the Black-Scholes pricing equation provides a
theta term to o�set the gamma term for S, no provision of a theta is made to o�set
the gamma P&Ls experienced on the variation of implied volatilities of options used
as hedges.

This is not surprising as the notion of dynamic implied volatilities is alien to the
Black-Scholes framework.

This is where stochastic volatility models are called for: their aim is not to model
the dynamics of realized volatility, which is hedged away by trading other options,
but to model the dynamics of implied volatilities, and provide their user with simple
break-even accounting conditions for the P&L of a hedged position.

13The vanna-volga method – see [29] – once used on FX desks for generating FX smiles is a poor man’s
answer to this issue, with “exotic” option P a European option.

– Rather than using a single vanilla option O we use 3 of them, and �nd quantities λi so that the
3 sensitivities d

dσ
, d2

dSdσ
, d2

dσ2 of the hedged position P − Σ3
ι=1λiOi vanish (a) in the Black-

Scholes model for an implied volatility σ̂0, (b) for current values of t, S. Cancellation of d
dσ

is
equivalent to cancellation of d2

dS2 , owing to the vega/gamma relationship in the Black-Scholes
model – see Section A.1 of Chapter 5.

– The hedging options are bought/sold at market prices, at implied volatilities σ̂i, thus the di�erence
OBS
i (σ̂i) − OBS

i (σ̂0) has to be passed on to the client as a hedging cost. We thus de�ne the
“market-adjusted” price PMkt of option P as:

PMkt = P BS(σ̂0) + Σiλi
(
OBS
i (σ̂i)−OBS

i (σ̂0)
)

(1.21)

The hedge portfolio is only e�ective for current values of t, S. It needs to be readjusted whenever
either moves – the corresponding rehedging costs are not factored in PMkt.

– As observed in [29], the vanna-volga price in (1.21) can be written as:

PMkt = P BS(σ̂0) + yσ
dP BS

dσ̂0

∣∣∣∣
S,σ̂0

+ yσ2
d2P BS

dσ̂2
0

∣∣∣∣
S,σ̂0

+ ySσ
d2P BS

dSdσ̂0

∣∣∣∣
S,σ̂0

= P BS(σ̂0) + yS2
d2P BS

dS2

∣∣∣∣
S,σ̂0

+ yσ2
d2P BS

dσ̂2
0

∣∣∣∣
S,σ̂0

+ ySσ
d2P BS

dSdσ̂0

∣∣∣∣
S,σ̂0

(1.22)

where the second line again follows from the vega/gamma relationship in the Black-Scholes
model: yS2 = yσS2σ̂0T . The interpretation of (1.22) is: we supplement the Black-Scholes price
at implied volatility σ̂0 with an estimation of future gamma P&Ls calculated (a) with current
values of the gammas and cross-gammas, (b) values for yS2 , ySσ , yσ2 such that market prices
for the three vanilla options Oi are recovered; yS2 , ySσ , yσ2 only depend on the σ̂i, not on P .
This underscores how local the vanna-volga adjustment is – it cannot replace a genuine model for
pricing volatility-of-volatility risk.

– Historically, the vanna-volga method has been used for interpolating implied volatilities: pick
a vanilla option of strike K and use (1.21) to generate the corresponding adjusted “market
price” – hence implied volatility. There is obviously no guarantee that the resulting interpolation
σ̂Mkt(K, σ̂0, σ̂i) is arbitrage-free.
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Introduction 19

In practice, for liquid securities such as equity indexes, there are plenty of options
available: rather than one implied volatility σ̂O , one needs to model the dynamics
of all implied volatilities σ̂KT , where K and T are, respectively, the strikes and
maturities of vanilla options. The two-dimensional set σ̂KT is known as the volatility
surface.

While a stochastic volatility model should ideally o�er maximum �exibility as
to the range of dynamics of the volatility surface it is able to produce, we may not
be able to build such a �exible model on one hand, and on the other hand we may
not need so much versatility: some classes of exotic options are only sensitive to
speci�c features of the dynamics of the volatility surface.

Before we delve into stochastic volatility models, we present two examples of
exotic options whose type of volatility risk can be exactly pinpointed.

1.3.1 Example 1: a barrier option

Consider an option of maturity one year that pays at maturity 1 unless St hits
the barrier L = 120, in which case the option expires worthless. The initial spot
value is S0 = 100. The pricing function F (t, S) of this barrier option has to satisfy
the terminal condition at maturity: F (T, S) = 1, for S < L as well as the boundary
condition F (t, L) = 0 for all t ∈ [0, T ].

How do we hedge this barrier option with vanilla options? Peter Carr and Andrew
Chou show in [22] that, given a barrier option with payo� f(S) and upper barrier
L, it is possible to �nd a European payo� g(S) of maturity T such that in the Black-
Scholes model its value G(t, S) exactly equals that of the barrier option, F (t, S) for
S ≤ L, at all times.

The condition that G (t, S) = F (t, S) at t = T implies that g(S) = f(S) for
S < L. For S > L, f is not de�ned, but we have to �nd g(S) such that G (t, S = L)
vanishes for all t < T .

Imagine we are able to �nd g such that this condition is satis�ed. Then we have a
European payo� that: (a) has the same �nal payo� as the barrier option, (b) satis�es
the same boundary condition for S = L and (c) solves the same pricing equation
over [0, L]: this implies that F (t, S) = G (t, S) for all S ∈ [0, L], t ∈ [0, T ]: the
barrier option is statically hedged by the European payo� G.

Carr and Chou give the following explicit expression for g, in the Black-Scholes
model:

S < L g (S) = f (S) (1.23a)

S > L g (S) = −
(
L

S

) 2r
σ2−1

f

(
L2

S

)
(1.23b)
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20 Stochastic volatility modeling

where r is the interest rate and σ the volatility. Let us assume vanishing interest
rates. The replicating European payo� for our barrier options is:

S < L g (S) = 1

S > L g (S) = −S
L

= −1− 1

L
(S − L)

+

This static hedge thus consists of two European digital options struck at L, each
of which pays 1 if ST < L and 0 otherwise, minus (a) one zero-coupon bond that
pays 1,∀ST , and (b) 1

L call options of strike L. ST is the value of S at maturity.
Equations (1.23a), (1.23b) for g (S) show that if f (L) 6= 0, g has a discontinuity

in S = L whose magnitude is twice that of f . The replicating European payo�
includes a digital option whose role is instrumental in replicating the sharp variation
of F in the vicinity of L.

Let us consider for simplicity that we are only using the double European digital
option: it pays 1 at T if ST < L and −1 if ST > L. Even though European digitals
are not liquid, they can be synthesized just like any European payo� by trading an
appropriate set of vanilla options, in our case a very tight put spread, that is the
combination of 1

2ε puts struck at L+ ε minus 1
2ε puts struck at L− ε.

The values of the barrier option, F, and of the double European digital option –
minus the zero-coupon bond – are shown as a function of S at t = 0 on the left-hand
side of Figure 1.3 while the right-hand side shows the dollar gamma for both options.
We have used σ = 20%.
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Figure 1.3: Value (left) and dollar gamma (right) of barrier option and double Euro-
pean digital option.

Had we used the exact static European hedge, curves would have overlapped
exactly, in both graphs, by construction. Simply using the double European digital
option still provides an acceptable hedge. Let us assume that we have sold at t = 0
the barrier option and have simultaneously purchased the double European digital
as a hedge.

Which price do we quote for the barrier option? We are using as hedge a double
European digital option whose market price will likely di�er from its Black-Scholes
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Introduction 21

price. The price we charge must thus be equal to the Black-Scholes price of the barrier
option augmented by the di�erence between market and Black-Scholes prices of the
double European digital: this extra charge covers the cost of actually purchasing the
European hedge.14

If we reach maturity without hitting the barrier L = 120, the payo�s of the
barrier option and the static European hedge exactly match: the hedge is perfect.

What if instead S hits the barrier? When S hits L at time τ , the barrier option ex-
pires worthlessly and we need to unwind our static European hedge. By construction,
in the Black-Scholes model, its value for S = L approximately vanishes.15

How about in reality? In reality, the value of our European static hedge will
depend on market implied volatilities at time τ for European options of maturity T
and will likely not vanish.

Let us make this dependence more explicit: the value D of the double European
digital is given by:

D = 2
PL+ε − PL−ε

2ε
− 1 = 2

dPK
dK

∣∣∣∣
L

− 1

where PK denotes the value of a put option of strike K , which is given by the
Black-Scholes formula for put options, using the implied volatility for strike K :
PK = PBSK (σ̂ = σ̂K). We have:

dPK
dK

=
dPBSK (σ̂K)

dK
=

dPBSK
dK

+
dPBSK
dσ̂

dσ̂K
dK

= DBSK (σ̂K) +
dPBSK
dσ̂

dσ̂K
dK

whereDBS is the value of a (single) European digital option, which pays 1 if ST < L
and 0 otherwise, in the Black-Scholes model. We get the following value for the
double European digital:

D = 2

(
DBSL (σ̂L) +

dPBSL
dσ̂

dσ̂K
dK

∣∣∣∣
L

)
− 1 (1.24)

DBS is evaluated for S = L; as can be checked numerically, DBS for S = L is

almost equal to 50% and has little sensitivity to the implied volatility σ̂L. Expression
(1.24) shows, though, that the value of the double European digital is very sensitive
to dσ̂K

dK

∣∣∣
L

which is the at-the-money skew at the time S hits L. Take the example
of a one-year ATM digital option; while DBSL (σ̂L) is about 50%, the size of the
correction term dPBSL

dσ̂
dσ̂K
dK

∣∣∣
L

for an equity index is typically about 8%: this is not a
small e�ect.

14Black-Scholes prices are computed with the volatility σ that we choose to risk-manage the barrier
option.

15It would vanish exactly had we used the exact static European hedge.



w
w

w
.lo

re
n

zo
b

er
g

o
m

i.c
o

m

22 Stochastic volatility modeling

Thus, as we unwind our static hedge the magnitude of the then-prevailing at-
the-money skew will determine whether we make or lose money. The Black-Scholes
price of the barrier option has then to be adjusted manually to include an estimation
of this gain or loss.

The lesson of this example is that the price of a barrier option is mostly dependent
on the dynamics of the at-the-money skew conditional on S hitting the barrier.16 A
stochastic volatility model for barrier options would need to provide a direct handle
on this precise feature of the dynamics of the volatility surface so as to appropriately
re�ect its P&L impact in the option price.

1.3.2 Example 2: a forward-start option

Forward-start options – also called cliquets17 – involve the ratio of a security’s
price observed at two di�erent dates – they are considered in detail in Chapter 3. Let
T1 and T2 be two dates in the future and consider the case of a simple call cliquet
whose payo� at T2 is given by (

ST2

ST1

− k
)+

(1.25)

Let us choose k = 100% – this is called a forward-start at-the-money call. The
price P of this option in the Black-Scholes model, because of homogeneity, does
not depend on S and only depends on volatility. Assuming zero interest rates for
simplicity, for k = 100%, the Black-Scholes price of our cliquet is approximately
given by:

P ' 1√
2π
σ
√
T2 − T1 (1.26)

The fact that P does not depend on S is worrisome: the only instrument whose
dynamics is accounted for in the Black-Scholes model is S, yet S is not appearing in
the pricing function.

P is only a function of volatility σ – σ is in fact the real underlying of the cliquet
option.

A cliquet is an option on volatility, more precisely on forward implied volatility,
that is the future implied volatility observed at T1 for maturity T2. At t = T1, the
cliquet becomes a vanilla option of maturity T2, in our case a call option struck at
kST1

. A suitable hedging strategy needs to generate at time T1 the money needed
to purchase a call option of maturity T2 struck at kST1

.
While payo� formula (1.25) suggests that the cliquet is an option of maturity T2

on S observed at T1 and T2, it is in fact an option of maturity T1 whose underlying

16Besides the forward-skew risk we have just analyzed, the price of the barrier option needs to be
adjusted for gap risk. Unwinding the European hedge – or unwinding the delta – cannot be done
instantaneously as S crosses L. In our case, the delta of the barrier option we have sold is negative: we
will need to buy stocks (or sell the double digital option) at a spot level that is presumably larger than L,
thus incurring a loss. We must thus adjust the price charged for the barrier option to cover, on average,
this loss.

17Ratchet, in French.
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is the at-the-money implied volatility for maturity T2, observed at T1. This is the
quantity whose dynamics a stochastic volatility model ought to provide a handle on.

1.3.3 Conclusion

Running an exotics book entails trading options dynamically to hedge other
options. Vanilla options should be considered as hedging instruments in their own
right and their dynamics modeled accordingly; as such the task of a stochastic
volatility model is to model the joint dynamics of the underlying security and its
associated volatility surface.
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24 Stochastic volatility modeling

Chapter’s digest
I Delta hedging removes the order-one contribution of δS to the P&L of an

option position. Specifying a break-even condition for the lowest-order portion – the
second order in δS – of the residual P&L leads to the Black-Scholes pricing equation
– a parabolic equation. The latter has a probabilistic interpretation: the solution can
be expressed as the expectation of the payo� under a density which is generated by
a di�usion for St.

The argument goes this way and not the other way around – modeling does not
start with the assumption of a di�usion for St and has little to do with Brownian
motion; in this respect we refer the reader to Section 4.2 of [53].18 For alternative
break-even criteria that involve higher-order terms in δS see Chapter 10.

When there are multiple hedge instruments, the suitability of a model depends
on the existence of a – possibly state- and time-dependent – break-even covariance
matrix for hedge instruments that ensures gamma/theta cancellation.

I Delta hedging is not adequate for reducing the standard deviation of the P&L
of an option position to reasonable levels. The sources of the dispersion of this P&L
are: (a) the tails of returns, (b) the volatility of realized volatility and the correlation
of future realized volatilities – see (1.15). Except for very short options, the latter
e�ect prevails, because of the long-ranged nature of volatility/volatility correlations.

I Using options for gamma-hedging immunizes us against realized volatility.
Dynamical trading of vanilla options, however, exposes us to uncertainty as to
future levels of implied volatilities. Stochastic volatility models are thus needed for
modeling the dynamics of implied volatilities, rather than that of realized volatility.

I Exotic options often depend in a complex way on the dynamics of implied
volatilities. Some speci�c classes of options, such as barrier options, or cliquets, are
such that their volatility risk can be pinpointed, enabling an easier assessment of
the suitability of a given model.

18This is not to mean we can write down just any pricing equation. It has to comply with the basic
requirements that (a) given two payo�s f and g, if g (S) ≥ f (S) ∀S then g should be more expensive
than f – this expresses absence of arbitrage, and for a linear pricing equation implies the existence of a
(risk-neutral) density and (b) that it obeys the convex order condition – see Section 2.2.2, page 29.


