What generates equity smiles ?

Lorenzo Bergomi

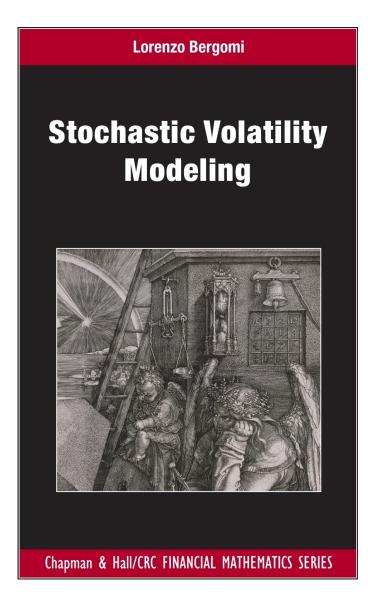
lorenzo.bergomi@sgcib.com

Global Markets Quantitative Research

Global Derivatives – Barcelona, May 2017

Outline

- Sources of the equity smile ?
- Historical distribution of daily returns
- An SV model with conditional non-Gaussian returns
- Impact on vanilla smiles
- Impact on path-dep payoffs



www.lorenzobergomi.com

Intro – 1

- What generates equity smiles? Supply & demand
- OK, but what should the "fair" smile look like?
- If no vanillas exist have to quote one
 - ▶ Delta-hedge vanilla ⇒ gamma/theta P&L
 - "Fair" ATMF skew given by covariance of spot & future realized variance
- ► If ATM vanillas liquid
 - Consider call spread position centered on ATMF such that $\Gamma = 0$
 - Initially $\Gamma = 0$, but $\Gamma + /\Gamma -$ when spot moves
 - Trade dynamically ATMF vanillas to cancel Γ
 - Carry P&L: spot/ATMF vol cross-gamma + ATMF vol gamma. Latter risk smaller
- In liquid markets ATMF skew measures implied level of spot/ATMF vol covariance (not spot/future realized vol)
- At order 1 in vol-of-vol:

$$S_{T} = \frac{d\widehat{\sigma}_{KT}}{d\ln K}\Big|_{F} = \frac{1}{2\widehat{\sigma}_{T}^{3}T}\int_{0}^{T}\frac{T-t}{T}\langle d\ln S_{t} d\widehat{\sigma}_{T,t}^{2}\rangle$$

 $\widehat{\sigma}_{T,t}$: ATMF/VS vol at t for maturity T

- ► So far considered P&L at order 2 in δS , $\delta \hat{\sigma}_T$
- What about large spot moves ?
 - Responsible for steep smiles ?
- Do large drawdowns generate a significant portion of the vanilla smile ?
- Do they impact other derivatives ?

Unconditional distribution of daily returns -1

► Take 1 century worth of DJIA daily closes¹ \Rightarrow daily returns $r_i = \frac{S_i}{S_{i-1}} - 1$

Separately normalize positive/negative returns:

$$r_i \rightarrow \overline{r}_i = rac{r_i}{\sqrt{\langle r_i^2 \rangle}}$$

Rank negative returns from lowest to highest. Define empirical cumulative density of normalized negative returns as:

$$P\left[\overline{r} \leq \overline{r}_i\right] = rac{1}{2} rac{i}{N^-}$$

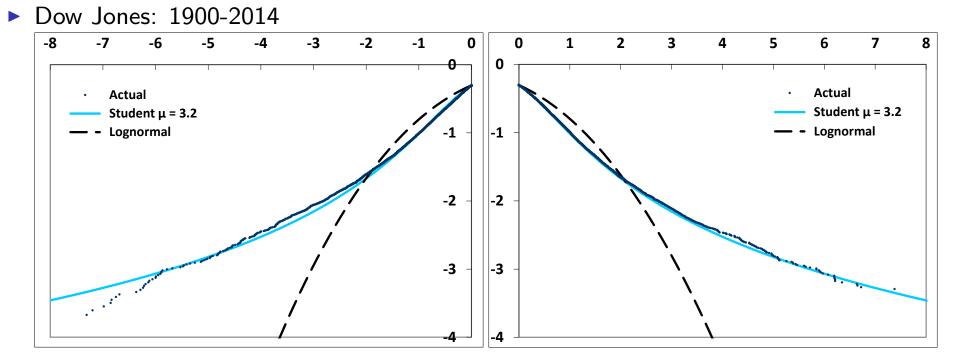
- Graph $log_{10}P[\overline{r} \leq r]$. Do same for positive returns
- Compare with (a) lognormal distribution, (b) Student distribution:

$$\rho_{\mu}\left(\overline{r}\right) = \frac{\Gamma\left(\frac{1+\mu}{2}\right)}{\sqrt{\mu\pi} \Gamma\left(\frac{\mu}{2}\right)} \frac{1}{\left(1+\frac{\overline{r}^{2}}{\mu}\right)^{\frac{1+\mu}{2}}} \qquad \propto \frac{1}{|\overline{r}|^{1+\mu}} \text{ for } \overline{r} \text{ large}$$

 μ : number of degrees of freedom

¹Available on *http://stooq.com*. Present sample: [Jan 1st 1900, July 20, 2014]

Unconditional distribution of daily returns - 2

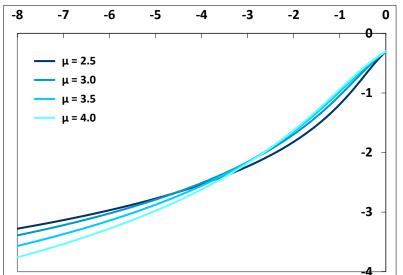


- ▶ 14103 negative returns. $\min(\overline{r}_i) = -19.6$. About 100 values of $\overline{r}_i \leq -4$.
- 15657 positive returns. $max(\overline{r}_i) = 14.3$.
- Fit with $\mu = 3.2$
- Student distribution
 - The smaller μ the thicker the tails. Only moments of order $< \mu$ exist
 - Variance $= \frac{\mu}{\mu 2}$. Kurtosis $= \frac{6}{\mu 4}$.
 - \blacktriangleright For $\mu \rightarrow \infty$ converges to Gaussian distribution

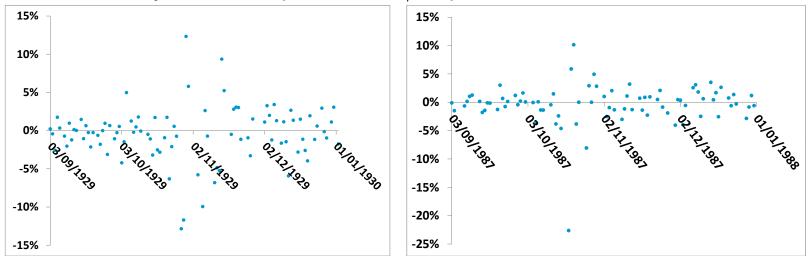
➡ Fit OK

Unconditional distribution of daily returns – 3

• Cumulative densities for different values of μ , all with $E[\overline{r}^2] = 1$.

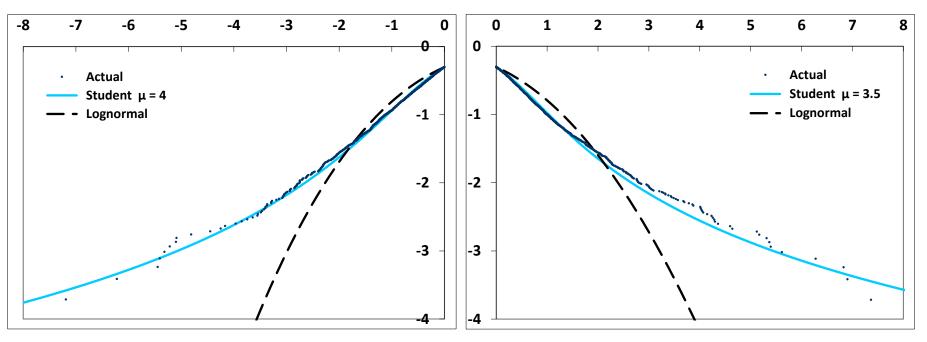


- $\Rightarrow \mu \in [3, 4]$ acceptable
- Left/right tails of empirical density similar ?? Yes
 - Dow Jones daily returns: Sep–Dec 1929 / Sep–Dec 1987



Unconditional distribution of daily returns – 4

• Other example: HSCEI index, 1993-2014



- ⇒ Daily returns of equity indexes well captured by Student distribution
- So far have looked at unconditional distribution lumps together very different volatility regimes.
- Write

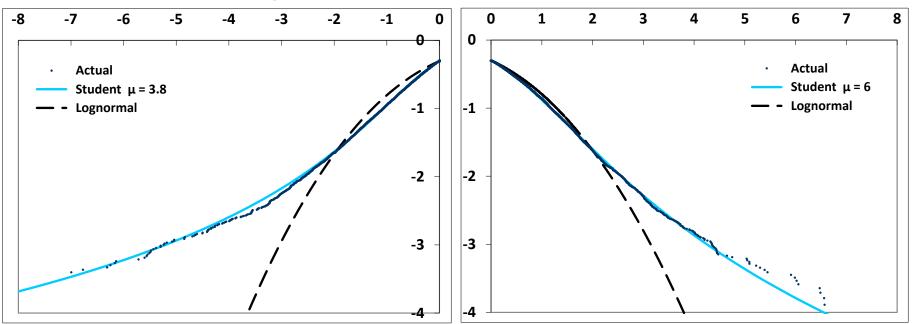
$$r_i = \sigma_i \sqrt{\delta t} z_i \quad E[z_i^2] = 1$$

- Fat tails of r_i due to randomness of σ_i ?
- Look at conditional distribution

Conditional distribution of daily returns

$$r_i = \sigma_i \sqrt{\delta t} z_i$$

- ▶ No easy acces to σ_i unless intraday data available.
 - Intrinsic noise of estimator of σ_i pollutes estimation of tails of z_i
- Proxy for σ_i : 1-year realized vol
- Dow Jones: 1900-2014 again



• μ larger than in unconditional distribution: OK

- ⇒ Even accounting for randomness of volatility, daily returns are fat-tailed
- \Rightarrow z_i markedly non-Gaussian \Rightarrow sizeable 1-day conditional smile
- ⇒ How does the 1-day conditional smile impact derivatives?

SV model with conditional 1-day smile

- I-day smile generates higher-order contributions to carry P&L, beyond gammas & cross-gammas of spot/implied vols
- ⇒ Need SV model to assess impact of (unhedgeable) 1-day smile risk
 - SV part of model sets σ_i , i.e. scale of daily returns
 - 1-day smile params govern 1-day conditional density
 - ... while keeping (a) vols of (implied) vols, (b) covariances of spot & (implied) vols unchanged.
- Start with 2-factor fwd variance workhorse
 - Dynamics of inst. fwd variances ξ_t^T :²

$$\frac{d\xi_t^T}{\xi_t^T} = (2\nu) \alpha \left((1-\theta) e^{-k_1(T-t)} dW_t^X + \theta e^{-k_2(T-t)} dW_t^Y \right)$$

• Curve ξ_t^T a function of two OU processes X_t, Y_t :

$$\xi_t^T = \xi_0^T e^{(2\nu)\alpha \left[(1-\theta)e^{-k_1(\tau-t)}X_t + \theta e^{-k_2(\tau-t)}Y_t \right] - \frac{4\nu^2 \alpha^2}{2}} \bullet$$

$$dX_t = -k_1 X_t dt + dW_t^X \quad dY_t = -k_2 Y_t dt + dW_t^Y$$

 $^{2}\alpha$ normalization factor: $\alpha = 1/\sqrt{(1-\theta)^{2} + \theta^{2} + 2\rho_{XY}\theta(1-\theta)} \Rightarrow \operatorname{vol}(\xi_{t}^{t}) = 2\nu \Rightarrow \operatorname{vol}(\sqrt{\xi_{t}^{t}}) = \nu$

SV model -1

• Process for S_t :

$$dS_{t} = (r - q)S_{t}dt + \sqrt{\xi_{t}^{t}}S_{t}dW_{t}^{S}$$
$$\langle dW^{S}dW^{X} \rangle = \rho_{SX}dt \quad \langle dW^{S}dW^{Y} \rangle = \rho_{SY}dt$$

 \Rightarrow Instantaneous vol of VS vol $\hat{\sigma}_T$ of maturity T – for flat TS of VS vols:

$$\operatorname{vol}(\widehat{\sigma}_{T}) = \nu \alpha \sqrt{(1-\theta)^{2} I^{2} (k_{1}T) + \theta^{2} I^{2} (k_{2}T) + 2\rho_{XY} \theta (1-\theta) I (k_{1}T) I (k_{2}T)}$$
$$I(x) = \frac{1-e^{-x}}{x}$$
$$\operatorname{vol}(\widehat{\sigma}_{T=0}) = \nu$$

• Vol of ATMF vol \approx vol of VS vol

⇒ ATMF skew at order 1 in vol-of-vol for flat TS of VS vols:

$$S_{T} = \nu \alpha \left[(1-\theta) \rho_{SX} \frac{k_{1}T - (1-e^{-k_{1}T})}{(k_{1}T)^{2}} + \theta \rho_{SY} \frac{k_{2}T - (1-e^{-k_{2}T})}{(k_{2}T)^{2}} \right]$$

SV model – 2

▶ Params θ , k_1 , k_2 , ρ_{XY} ? rightarrow so that $vol(\hat{\sigma}_T)$ matches power-law benchmark

$$\operatorname{vol}(\widehat{\sigma}_{\mathcal{T}})_{\operatorname{Benchmark}} = \nu_0 \left(\frac{3\mathrm{m}}{\mathcal{T}}\right)^{\alpha}$$

over range $[T_{\min}, T_{\max}]$.

- Typically, $\alpha = 0.4$, $\nu_0 = 60\%$ (realized) / 100% (implied)
 - Sets for $\alpha = 0.4$, $\nu_0 = 100\%$, range [1m, 5y]

ν	120.9%	135.8%	174.0%	178.2%	181.9%	185.1%	190.1%
θ	57.9%	30.1%	24.5%	23.8%	23.4%	23.1%	22.8%
k ₁	0.58	2.59	5.35	6.02	6.65	7.26	8.34
k ₂	1.19	0.32	0.28	0.27	0.25	0.24	0.22
ρ _{χγ}	-95%	-50%	0%	20%	40%	60%	99%

- ► No over-parametrization. Different sets ⇒ different short vol/long vol correlations
- Spot/factor correls ρ_{SX} , ρ_{SY} such that:
 - Either generate given level & term-structure of covariances of spot & ATMF vols
 - Or generate desired term structure of ATMF skew. Typically:

$${\cal S}_{{\cal T}} \propto rac{1}{{\cal T}^\gamma}$$
 with $\gamma \in [0.3, 0.7],$ range $[1{
m m}, 5{
m y}]$

SV model with conditional 1-day smile -1

- Set time scale $\Delta = 1$ day
- Find variances: simulate increments $\delta X, \delta Y$ of OU processes X, Y

$$\delta X = \int_{t}^{t+\Delta} e^{-k_{1}(t+\Delta-u)} dW_{u}^{X} \qquad \delta Y = \int_{t}^{t+\Delta} e^{-k_{2}(t+\Delta-u)} dW_{u}^{Y}$$

Spot increment:

$$S_{t+\Delta} = S_t \Big[1 + (r-q) \Delta + \sigma_t \, \delta Z \Big]$$

with

$$\sigma_t = \sqrt{rac{1}{\Delta} \int_t^{t+\Delta} \xi_t^ au d au} ~pprox ~\sqrt{\xi_t^t} ~\mathrm{if}~\Delta~\mathrm{smal}}$$

⇒ In standard 2F model

$$S_{t+\Delta} = S_t \Big[1 + (r-q) \Delta + \sigma_t \, \delta W^S \Big]$$

 \Rightarrow Here δZ fat-tailed, no longer Gaussian

SV model with conditional 1-day smile -2

- ▶ δZ : 2-sided Student distribution with params μ_+, μ_-
- ▶ Histo. positive & negative returns \approx equally probable \Rightarrow 1-day ATM digital $\approx \frac{1}{2}$
- In model, want ability to set 1-day ATM skew at will
- ⇒ Introduce p^+ , p^- : probabilities of positive/negative returns

$$\begin{cases} \delta Z = \sigma_+ \sqrt{\Delta} |X_{\mu_+}| & \text{with probability } p_+ \\ \delta Z = -\sigma_- \sqrt{\Delta} |X_{\mu_-}| & \text{with probability } p_- \end{cases}$$

 X_{μ} : Student random variable with μ degrees of freedom

 $\Rightarrow \sigma_+, \sigma_-$ such that $E[\delta Z] = 0, E[\delta Z^2] = \Delta$

• Need to correlate δZ with $\delta X, \delta Y$

SV model with conditional 1-day smile -3

 \Rightarrow Define function f that maps Brownian increment δW^S into δZ :

$$\frac{\delta Z}{\sqrt{\Delta}} = f\left(\frac{\delta W^{S}}{\sqrt{\Delta}}\right)$$

$$\begin{cases} x \leq \mathcal{N}_{G}^{-1}(p_{-}) : & f(x) = \zeta_{-}\sqrt{\frac{\mu_{-}-2}{\mu_{-}}} \mathcal{N}_{\mu_{-}}^{-1}\left(\frac{\mathcal{N}_{G}(x)}{2p_{-}}\right) \\ x \geq \mathcal{N}_{G}^{-1}(p_{-}) : & f(x) = \zeta_{+}\sqrt{\frac{\mu_{+}-2}{\mu_{+}}} \mathcal{N}_{\mu_{+}}^{-1}\left(\frac{1}{2} + \frac{\mathcal{N}_{G}(x) - p_{-}}{2p_{+}}\right) \end{cases}$$

- \mathcal{N}_{G} : CDF of standard normal variable, \mathcal{N}_{G}^{-1} its inverse
- \mathcal{N}_{μ}^{-1} : inverse CDF of Student random variable with μ degrees of freedom

•
$$\zeta^+, \zeta^-$$
 given by:

$$\zeta_{+} = \frac{p_{-}\alpha_{-}}{\sqrt{p_{+}(p_{-}\alpha_{-})^{2} + p_{-}(p_{+}\alpha_{+})^{2}}} \qquad \zeta_{-} = \frac{p_{+}\alpha_{+}}{\sqrt{p_{+}(p_{-}\alpha_{-})^{2} + p_{-}(p_{+}\alpha_{+})^{2}}}$$

with $\alpha_{+} = \frac{2}{\sqrt{\pi}} \frac{\sqrt{\mu_{+}-2}}{\mu_{+}-1} \frac{\Gamma\left(\frac{1+\mu_{+}}{2}\right)}{\Gamma\left(\frac{\mu_{+}}{2}\right)}$ and likewise for α_{-}

 \Rightarrow Mapping function *f* built once and for all.

$$E[f(x)] = 0$$
 $E[f^2(x)] = 1$ 15/23

SV model with conditional 1-day smile – 4

- Now able to generate δZ from Brownian increment δW^S : $\frac{\delta Z}{\sqrt{\Delta}} = f\left(\frac{\delta W^S}{\sqrt{\Delta}}\right)$
- Last part of job: correlate δW^S with δX , δY
 - Covariances $E[\delta Z \delta X]$, $E[\delta Z \delta Y]$ need to stay fixed
- ▶ In fat-tailed version of model, use correlations ρ_{SX}^*, ρ_{SY}^* such that:

$$E_*[\delta Z \delta X] = E[\delta W^S \delta X]$$
 likewise for $E[\delta Z \delta Y]$

- ► Standard 2F model: $\delta X = I(k_1 \Delta) (\rho_{SX} \delta W^S + ...) \qquad I(x) = \frac{1-e^{-x}}{x}$
- Fat-tailed 2F model: $\delta X = I(k_1 \Delta) (\rho_{SX}^* \delta W^S + ...)$

• Equate covariance of δX with $\delta Z, \delta W^S$:

$$E_*\left[\delta Z(\bullet \rho_{SX}^* \delta W^S)\right] = E\left[\delta W^S(\bullet \rho_{SX} \delta W^S)\right] = \bullet \rho_{SX} \Delta$$

Yields:

$$\frac{\rho_{SX}^*}{\rho_{SX}} = \frac{\Delta}{E\left[\delta Z \delta W^S\right]} = \frac{1}{\int \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} x f(x) dx}$$

⇒ Rescaling of spot/vol correlations same for all factors:

$$rac{
ho_{SY}^*}{
ho_{SY}} = rac{
ho_{SX}^*}{
ho_{SX}} \geq 1$$
 (Cauchy-Schwarz) 16/23

SV model with conditional 1-day smile – 5

- Fait-tailed 2F model
 - ► Standard simulation of 2 OU processes X, Y with correls ρ_{SX}^*, ρ_{SY}^* with W^S .
 - Spot simulation: no harder than in standard 2F model:

$$S_{t+\Delta} = S_t \left[(r-q)S_t \Delta + \sigma_t \sqrt{\Delta} f\left(\frac{\delta W^S}{\sqrt{\Delta}}\right) \right]$$

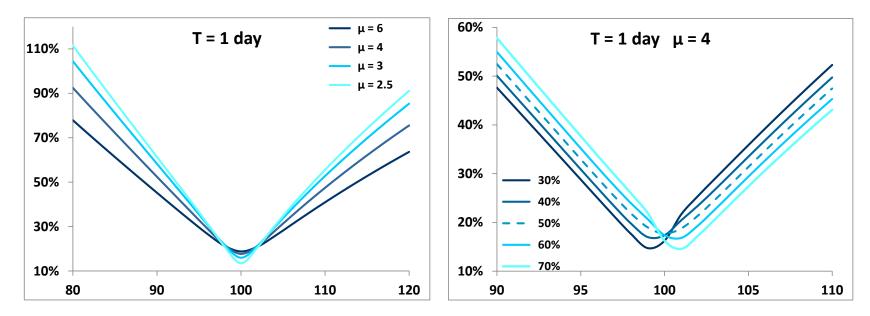
⇒ Pricing time similar to 2F standard model – in practice $\sigma_t = \sqrt{\xi_t^t}$

- Can vary 1-day mile (i.e. f) while leaving dynamics of vols unchanged: vols of implied vols, correls of spot & implied vols
 - 1-day smile params only change conditional density of normalized daily returns
 - Neither possible with jump/diffusion, nor with time-changed Lévy processes L_{τ_t}
 - Conditional skewness & kurtosis fixed, correlation of spot and vols fixed
 - Continuous limit of model ?? Depends on scaling of p⁺(Δ) ¹/₂ and μ(Δ) as Δ → 0.

1-day smile

• Left:
$$p_+ = p_- = \frac{1}{2}$$
. Right: $p_+ \neq p_-$.
 $\mu_+ = \mu_-$, $\sigma_t = 20\%$.

Smile is obtained by numerical integration



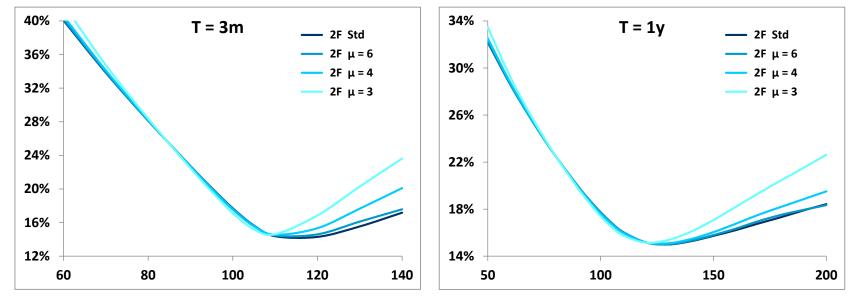
 \Rightarrow p_+, μ_+, μ_- do what they're supposed to do.

Vanilla smile – 1

Parameters of 2F model (typical of STOXX50 – July 2014)

v	θ	k ₁	k ₂	ρ _{XY}	ρ _{sx}	ρ _{sy}
257%	15.1%	8.96	0.46	40%	-74.6%	-13.7%

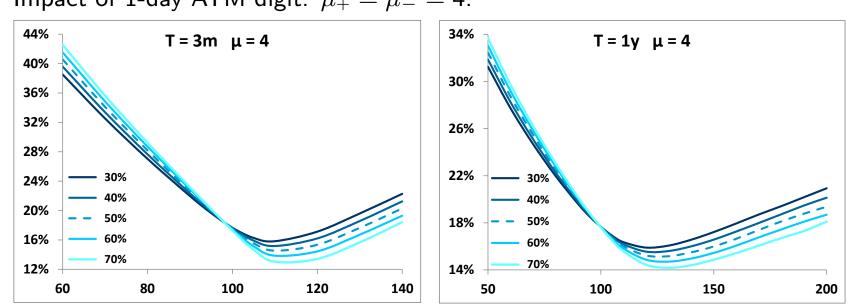
▶ 3m and 1y smiles for different $\mu_+ = \mu_-$, $p_+ = 0.5$, VS vols flat at 20%.



Std: standard 2F model – equivalent to $\mu = \infty$

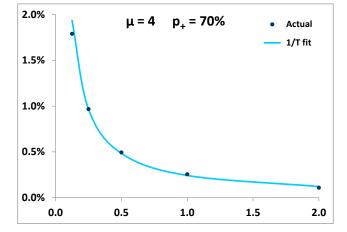
- Std 2F model diffusive: algos for quasi-real-time vanilla smile generation see book
- Fat-tailed 2F model is not: really have to price (delta-hedged) call/put payoffs
- ⇒ 1-day smile has minute impact on vanilla near-ATM smile
- ⇒ 1-day smile impacts tails mostly OTM calls (for equities)

Vanilla smile – 2



• Impact of 1-day ATM digit. $\mu_+ = \mu_- = 4$.

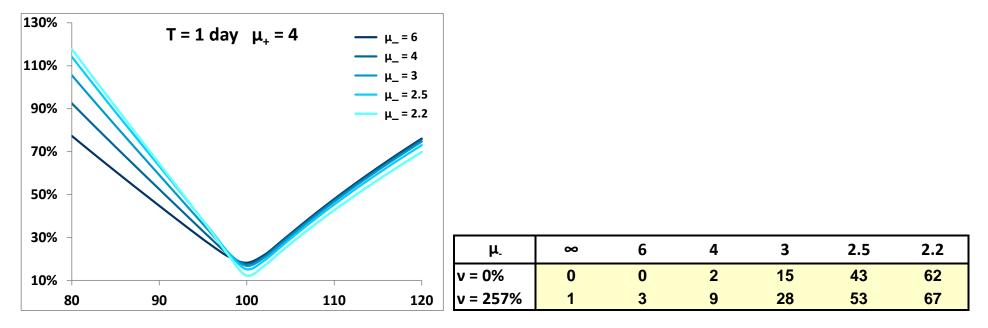
Scaling of 1-day skew contribution to 95/105 skew. Turn off stoch vol: $\nu = 0$



 \Rightarrow Contribution of 1-day skew to vanilla ATM skew $\propto \frac{1}{T}$: OK

Example 1: Daily cliquets – Gap notes – Crash puts

- Similar to CDS contract. Maturities 3m, 6m, 1y
- Receive Put (90%, 80%, 75%) or Put spread (90%/80%, 85%/75%) payoff on daily index returns
- Pay quarterly spread, starting at inception. Expires when 1st Put/Put spread is triggered
 - No delta, some vega almost pure 1-day smile payoff
- Left: 1-day smile for different values of μ_{-} . $\mu_{+} = 4, p_{+} = 0.5$, vol = 20%
- ▶ Right: upfront prices for 1-year 80% Crash Put in basis points



 \Rightarrow Market prices very conservative, correspond to implied value of $\mu_{-} pprox 2.2$

Example 2: Var swaps

- ▶ $\ln(\frac{S_{i+1}}{S_i})^2$: VS other instance of daily cliquet
 - Assume no dividends. Consider position: short VS/long vanilla replication of -2 ln S, delta-hedged
 - Carry P&L cancels up to order 2 in δS .
 - Contribution of higher orders $\Rightarrow \hat{\sigma}_{VS} \neq \hat{\sigma}_{Logswap}$

• $(\hat{\sigma}_{VS} - \hat{\sigma}_{Logswap})$ for 1-year maturity, with/without stoch vol, for $p_+ = \frac{1}{2}$.

μ	8	6	4	3
ν = 0	0%	0%	0.02%	0.16%
v = 257%	0.02%	0.04%	0.10%	0.29%

	p+	30%	40%	50%	60%	70%
5	μ = 4, ν = 257%	-0.11%	0%	0.10%	0.23%	0.40%

 \Rightarrow $\mu = 4$, $p_+ = \frac{1}{2}$: relative mismatch $\frac{\widehat{\sigma}_{VS}}{\widehat{\sigma}_{Logswap}} - 1$ is $\approx 0.10\%/20\% = 0.5\%$

⇒ Direct backtesting on index returns? Slightly lower estimate:

$$\frac{1}{2} \left(\frac{\langle r^2 \rangle}{\langle 2(e^r - 1) - 2r \rangle} - 1 \right) \quad r \text{ daily log-return}$$

 \Rightarrow Conclusion: $\hat{\sigma}_{VS} - \hat{\sigma}_{Logswap}$: small impact of 1-day smile

⇒ Mostly impacted by dividend model

Conclusion

- SV model with handle on 1-day smile
 - ... while keeping break-even levels of vommas & vannas unchanged

$$r_i = \sigma_i \sqrt{\delta t} z_i$$

- Find variance model: sets scale σ_i of daily returns
- Additional parameters govern 1-day smile: μ_+, μ_-, p_+
- Simulation no harder than in std 2F model
- Allows assessment of 1-day smile risk on derivatives
- Unhedgeable risk we're carrying: needs to be priced conservatively
- Near-ATMF smile overwelmingly generated by covariance of spot and ATMF/VS vols

$$\frac{d\widehat{\sigma}_{KT}}{d\ln K}\Big|_{F} = \frac{1}{2\widehat{\sigma}_{T}^{3}T}\int_{0}^{T}\frac{T-t}{T}\langle d\ln S_{t} \ d\widehat{\sigma}_{T,t}^{2}\rangle$$

- ⇒ 1-day smile impacts tails of vanilla smile mostly OTM calls
- ⇒ Larger impact on path-dep payoffs referencing daily returns
 - Daily cliquets
 - Var swaps
 - Capped VSs, absswaps ...