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Outline

I Sources of the equity smile ?

I Historical distribution of daily returns

I An SV model with conditional non-Gaussian
returns

I Impact on vanilla smiles

I Impact on path-dep payoffs
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Intro – 1
I What generates equity smiles? Supply & demand

I OK, but what should the ”fair” smile look like?

I If no vanillas exist - have to quote one
I Delta-hedge vanilla é gamma/theta P&L
I ”Fair” ATMF skew given by covariance of spot & future realized variance

I If ATM vanillas liquid
I Consider call spread position centered on ATMF such that Γ = 0
I Initially Γ = 0, but Γ + /Γ− when spot moves
I Trade dynamically ATMF vanillas to cancel Γ
I Carry P&L: spot/ATMF vol cross-gamma + ATMF vol gamma. Latter risk smaller

é In liquid markets ATMF skew measures implied level of spot/ATMF vol
covariance (not spot/future realized vol)

I At order 1 in vol-of-vol:

ST =
d σ̂KT

d lnK

∣∣∣∣
F

=
1

2σ̂3
TT

∫ T

0

T − t

T

〈
d lnSt d σ̂

2
T ,t

〉
σ̂T ,t : ATMF/VS vol at t for maturity T
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Intro – 2

I So far considered P&L at order 2 in δS , δσ̂T

I What about large spot moves ?

I Responsible for steep smiles ?

I Do large drawdowns generate a significant portion of the vanilla smile ?

I Do they impact other derivatives ?
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Unconditional distribution of daily returns – 1

I Take 1 century worth of DJIA daily closes1 é daily returns ri = Si
Si−1
− 1

I Separately normalize positive/negative returns:

ri → r i =
ri√
〈r 2

i 〉

I Rank negative returns from lowest to highest. Define empirical cumulative density
of normalized negative returns as:

P [r ≤ r i ] =
1

2

i

N−

I Graph log10P[r ≤ r ]. Do same for positive returns

I Compare with (a) lognormal distribution, (b) Student distribution:

ρµ (r) =
Γ
(

1+µ
2

)
√
µπ Γ

(
µ
2

) 1(
1 + r2

µ

) 1+µ
2

∝ 1

|r |1+µ
for r large

µ: number of degrees of freedom

1Available on http://stooq.com. Present sample: [Jan 1st 1900, July 20, 2014]
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Unconditional distribution of daily returns – 2
I Dow Jones: 1900-2014
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I 14103 negative returns. min(r i ) = −19.6. About 100 values of r i ≤ −4.

I 15657 positive returns. max(r i ) = 14.3.

I Fit with µ = 3.2

I Student distribution

I The smaller µ the thicker the tails. Only moments of order < µ exist

I Variance = µ
µ−2

. Kurtosis = 6
µ−4

.

I For µ→∞ converges to Gaussian distribution

é Fit OK
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Unconditional distribution of daily returns – 3
I Cumulative densities for different values of µ, all with E [ r 2 ] = 1.
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é µ ∈ [3, 4] acceptable

I Left/right tails of empirical density similar ?? Yes

I Dow Jones daily returns: Sep–Dec 1929 / Sep–Dec 1987
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Unconditional distribution of daily returns – 4
I Other example: HSCEI index, 1993-2014
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é Daily returns of equity indexes well captured by Student distribution
é So far have looked at unconditional distribution – lumps together very different

volatility regimes.

I Write
ri = σi

√
δt zi E [z2

i ] = 1

I Fat tails of ri due to randomness of σi ?

I Look at conditional distribution
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Conditional distribution of daily returns

ri = σi

√
δt zi

I No easy acces to σi – unless intraday data available.
I Intrinsic noise of estimator of σi pollutes estimation of tails of zi

I Proxy for σi : 1-year realized vol

I Dow Jones: 1900-2014 again
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I µ larger than in unconditional distribution: OK

é Even accounting for randomness of volatility, daily returns are fat-tailed

é zi markedly non-Gaussian é sizeable 1-day conditional smile

é How does the 1-day conditional smile impact derivatives? 9 / 23



SV model with conditional 1-day smile

I 1-day smile generates higher-order contributions to carry P&L, beyond gammas &
cross-gammas of spot/implied vols

é Need SV model to assess impact of (unhedgeable) 1-day smile risk
I SV part of model sets σi , i.e. scale of daily returns

I 1-day smile params govern 1-day conditional density

I ... while keeping (a) vols of (implied) vols, (b) covariances of spot & (implied) vols
unchanged.

I Start with 2-factor fwd variance workhorse

I Dynamics of inst. fwd variances ξTt :2

dξTt
ξTt

= (2ν) α
(

(1− θ)e−k1(T−t)dW X
t + θe−k2(T−t)dW Y

t

)
I Curve ξTt a function of two OU processes Xt ,Yt :

ξTt = ξT0 e
(2ν)α

[
(1−θ)e−k1(T−t)Xt + θe−k2(T−t)Yt

]
− 4ν2α2

2
•

dXt = −k1Xtdt + dW X
t dYt = −k2Ytdt + dW Y

t

2α normalization factor: α = 1/
√

(1 − θ)2 + θ2 + 2ρXY θ (1 − θ) é vol(ξtt ) = 2ν é vol(
√
ξtt ) = ν

10 / 23



SV model – 1

I Process for St :

dSt = (r − q)Stdt +
√
ξttStdW

S
t

〈dW SdW X 〉 = ρSXdt 〈dW SdW Y 〉 = ρSY dt

é Instantaneous vol of VS vol σ̂T of maturity T – for flat TS of VS vols:

vol(σ̂T ) = ν α

√
(1− θ)2 I 2 (k1T ) + θ2I 2 (k2T ) + 2ρXY θ (1− θ) I (k1T ) I (k2T )

I (x) =
1− e−x

x

vol(σ̂T=0) = ν

I Vol of ATMF vol ≈ vol of VS vol

é ATMF skew at order 1 in vol-of-vol for flat TS of VS vols:

ST = να

[
(1− θ) ρSX

k1T −
(
1− e−k1T

)
(k1T )2

+ θρSY
k2T −

(
1− e−k2T

)
(k2T )2

]
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SV model – 2

I Params θ, k1, k2, ρXY ? é so that vol(σ̂T ) matches power-law benchmark

vol(σ̂T )Benchmark = ν0

(
3m

T

)α
over range [Tmin,Tmax].

I Typically, α = 0.4, ν0 = 60% (realized) / 100% (implied)
I Sets for α = 0.4, ν0 = 100%, range [1m, 5y]

ν 120.9% 135.8% 174.0% 178.2% 181.9% 185.1% 190.1%
θ 57.9% 30.1% 24.5% 23.8% 23.4% 23.1% 22.8%

k1 0.58 2.59 5.35 6.02 6.65 7.26 8.34
k2 1.19 0.32 0.28 0.27 0.25 0.24 0.22

ρXY -95% -50% 0% 20% 40% 60% 99%

I No over-parametrization. Different sets é different short vol/long vol correlations

I Spot/factor correls ρSX , ρSY such that:

I Either generate given level & term-structure of covariances of spot & ATMF vols

I Or generate desired term structure of ATMF skew. Typically:

ST ∝
1

Tγ
with γ ∈ [0.3, 0.7], range [1m, 5y]
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SV model with conditional 1-day smile – 1

I Set time scale ∆ = 1 day

I Fwd variances: simulate increments δX , δY of OU processes X ,Y

δX =

∫ t+∆

t

e−k1(t+∆−u)dW X
u δY =

∫ t+∆

t

e−k2(t+∆−u)dW Y
u

I Spot increment:

St+∆ = St

[
1 + (r − q) ∆ + σt δZ

]
with

σt =

√
1

∆

∫ t+∆

t

ξτt dτ ≈
√
ξtt if ∆ small

é In standard 2F model

St+∆ = St

[
1 + (r − q) ∆ + σt δW

S
]

é Here δZ fat-tailed, no longer Gaussian
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SV model with conditional 1-day smile – 2

I δZ : 2-sided Student distribution with params µ+, µ−

I Histo. positive & negative returns ≈ equally probable é 1-day ATM digital ≈ 1
2

I In model, want ability to set 1-day ATM skew at will

é Introduce p+, p−: probabilities of positive/negative returns

{
δZ = σ+

√
∆ |Xµ+ | with probability p+

δZ = − σ−
√

∆
∣∣Xµ−

∣∣ with probability p−

Xµ: Student random variable with µ degrees of freedom

é σ+, σ− such that E [δZ ] = 0, E [δZ 2] = ∆

I Need to correlate δZ with δX , δY
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SV model with conditional 1-day smile – 3
é Define function f that maps Brownian increment δW S into δZ :

δZ√
∆

= f

(
δW S

√
∆

)

x ≤ N−1

G (p−) : f (x) = ζ−
√

µ−−2

µ−
N−1
µ−

(
NG (x)

2p−

)
x ≥ N−1

G (p−) : f (x) = ζ+

√
µ+−2
µ+
N−1
µ+

(
1
2

+
NG (x) − p−

2p+

)
I NG : CDF of standard normal variable, N−1

G its inverse

I N−1
µ : inverse CDF of Student random variable with µ degrees of freedom

I ζ+, ζ− given by:

ζ+ =
p−α−√

p+ (p−α−)2 + p− (p+α+)2
ζ− =

p+α+√
p+ (p−α−)2 + p− (p+α+)2

with α+ = 2√
π

√
µ+−2

µ+−1

Γ
(

1+µ+
2

)
Γ(

µ+
2 )

and likewise for α−

é Mapping function f built once and for all.

E [f (x)] = 0 E [f 2(x)] = 1 15 / 23



SV model with conditional 1-day smile – 4
I Now able to generate δZ from Brownian increment δW S : δZ√

∆
= f

(
δW S
√

∆

)
I Last part of job: correlate δW S with δX , δY

I Covariances E [δZδX ], E [δZδY ] need to stay fixed

I In fat-tailed version of model, use correlations ρ∗SX , ρ
∗
SY such that:

E∗
[
δZδX

]
= E

[
δW SδX

]
likewise for E

[
δZδY

]
I Standard 2F model: δX = I (k1∆)

(
ρSX δW

S + . . .
)

I (x) = 1−e−x

x

I Fat-tailed 2F model: δX = I (k1∆)
(
ρ∗SX δW

S + . . .
)

I Equate covariance of δX with δZ , δW S :

E∗
[
δZ
(
• ρ?SX δW

S
)]

= E
[
δW S

(
• ρSX δW S

)]
= • ρSX ∆

I Yields:
ρ∗SX
ρSX

=
∆

E [δZδW S ]
=

1∫
e
− x2

2√
2π

x f (x)dx

é Rescaling of spot/vol correlations same for all factors:

ρ∗SY
ρSY

=
ρ∗SX
ρSX

≥ 1 (Cauchy-Schwarz)
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SV model with conditional 1-day smile – 5

I Fait-tailed 2F model

I Standard simulation of 2 OU processes X ,Y with correls ρ∗SX , ρ
∗
SY with W S .

I Spot simulation: no harder than in standard 2F model:

St+∆ = St
[
(r − q)St∆ + σt

√
∆f

(
δW S

√
∆

)]

é Pricing time similar to 2F standard model – in practice σt =
√
ξtt

é Can vary 1-day mile (i.e. f ) while leaving dynamics of vols unchanged: vols of
implied vols, correls of spot & implied vols

I 1-day smile params only change conditional density of normalized daily returns

I Neither possible with jump/diffusion, nor with time-changed Lévy processes Lτt
I Conditional skewness & kurtosis fixed, correlation of spot and vols fixed

I Continuous limit of model ?? Depends on scaling of p+(∆)− 1
2

and µ(∆) as
∆→ 0.
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1-day smile

I Left: p+ = p− = 1
2
. Right: p+ 6= p−.

µ+ = µ−, σt = 20%.

I Smile is obtained by numerical integration
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é p+, µ+, µ− do what they’re supposed to do.
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Vanilla smile – 1
I Parameters of 2F model (typical of STOXX50 – July 2014)

ν θ k1 k2 ρXY ρSX ρSY

257% 15.1% 8.96 0.46 40% -74.6% -13.7%

I 3m and 1y smiles for different µ+ = µ−, p+ = 0.5, VS vols flat at 20%.
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Std: standard 2F model – equivalent to µ =∞

I Std 2F model diffusive: algos for quasi-real-time vanilla smile generation – see book

I Fat-tailed 2F model is not: really have to price (delta-hedged) call/put payoffs

é 1-day smile has minute impact on vanilla near-ATM smile

é 1-day smile impacts tails – mostly OTM calls (for equities)
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Vanilla smile – 2
I Impact of 1-day ATM digit. µ+ = µ− = 4.
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I Scaling of 1-day skew contribution to 95/105 skew. Turn off stoch vol: ν = 0
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é Contribution of 1-day skew to vanilla ATM skew ∝ 1
T

: OK
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Example 1: Daily cliquets – Gap notes – Crash puts
I Similar to CDS contract. Maturities 3m, 6m, 1y

I Receive Put (90%, 80%, 75%) or Put spread (90%/80%, 85%/75%) payoff on
daily index returns

I Pay quarterly spread, starting at inception. Expires when 1st Put/Put spread is
triggered

I No delta, some vega – almost pure 1-day smile payoff

I Left: 1-day smile for different values of µ−. µ+ = 4, p+ = 0.5, vol = 20%

I Right: upfront prices for 1-year 80% Crash Put – in basis points
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μ- ∞ 6 4 3 2.5 2.2

ν = 0% 0 0 2 15 43 62
ν = 257% 1 3 9 28 53 67

é Market prices very conservative, correspond to implied value of µ− ≈ 2.2
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Example 2: Var swaps
I ln(

Si+1

Si
)2: VS other instance of daily cliquet

I Assume no dividends. Consider position: short VS/long vanilla replication of
−2 ln S, delta-hedged

I Carry P&L cancels up to order 2 in δS .

I Contribution of higher orders é σ̂VS 6= σ̂Logswap

I (σ̂VS − σ̂Logswap) for 1-year maturity, with/without stoch vol, for p+ = 1
2
.

∞ 6 4 3 30% 40% 50% 60% 70%

0% 0% 0.02% 0.16% -0.11% 0% 0.10% 0.23% 0.40%
0.02% 0.04% 0.10% 0.29%

μ

ν = 0

ν = 257%

p+

μ = 4,  ν = 257%

é µ = 4, p+ = 1
2
: relative mismatch σ̂VS

σ̂Logswap
− 1 is ≈ 0.10%/20% = 0.5%

é Direct backtesting on index returns? Slightly lower estimate:

1

2

(
〈r 2〉

〈2(er − 1)− 2r〉 − 1

)
r daily log-return

é Conclusion: σ̂VS − σ̂Logswap: small impact of 1-day smile

é Mostly impacted by dividend model
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Conclusion
I SV model with handle on 1-day smile

... while keeping break-even levels of vommas & vannas unchanged

ri = σi

√
δt zi

I Fwd variance model: sets scale σi of daily returns
I Additional parameters govern 1-day smile: µ+, µ−, p+

I Simulation no harder than in std 2F model

I Allows assessment of 1-day smile risk on derivatives

I Unhedgeable risk we’re carrying: needs to be priced conservatively

é Near-ATMF smile overwelmingly generated by covariance of spot and ATMF/VS
vols

d σ̂KT

d lnK

∣∣∣∣
F

=
1

2σ̂3
TT

∫ T

0

T − t

T

〈
d lnSt d σ̂

2
T ,t

〉
é 1-day smile impacts tails of vanilla smile – mostly OTM calls

é Larger impact on path-dep payoffs referencing daily returns

I Daily cliquets
I Var swaps
I Capped VSs, absswaps ...
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