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Intro — 1

» What generates equity smiles? Supply & demand
» OK, but what should the "fair’ smile look like?

» If no vanillas exist - have to quote one
> Delta-hedge vanilla ©> gamma/theta P&L
» "Fair” ATMF skew given by covariance of spot & future realized variance

» If ATM vanillas liquid

» Consider call spread position centered on ATMF such that =0

> Initially ' =0, but ' + /I — when spot moves

» Trade dynamically ATMF vanillas to cancel I

> Carry P&L: spot/ATMF vol cross-gamma + ATMF vol gamma. Latter risk smaller

= In liquid markets ATMF skew measures implied level of spot/ATMF vol
covariance (not spot/future realized vol)

» At order 1 in vol-of-vol:
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ot,t: ATMF/VS vol at t for maturity T
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Intro — 2

>

So far considered P&L at order 2 in 0S, do71

What about large spot moves ?

» Responsible for steep smiles 7

Do large drawdowns generate a significant portion of the vanilla smile ?

Do they impact other derivatives ?
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Unconditional distribution of daily returns — 1

» Take 1 century worth of DJIA daily closes' => daily returns r; = 5_5_"1 —1

» Separately normalize positive/negative returns:

» Rank negative returns from lowest to highest. Define empirical cumulative density
of normalized negative returns as:

1

Plr<r] = 5 V=

» Graph logioP[r < r]. Do same for positive returns

» Compare with (a) lognormal distribution, (b) Student distribution:

r(=2) 1 1
) = X for r large
i w

w: number of degrees of freedom

! Available on http://stooq.com. Present sample: [Jan 1st 1900, July 20, 2014]
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Unconditional distribution of daily returns — 2

» Dow Jones: 1900-2014
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> 14103 negative returns. min(r;) = —19.6. About 100 values of r; < —4.

» 15657 positive returns. max(r;) = 14.3.

» Fit with = 3.2

» Student distribution

» The smaller u the thicker the tails. Only moments of order < pu exist

» Variance =

» For © — oo converges to Gaussian distribution

= Fit OK

W 6

£ Kurtosis = ——.
lj/—

2° uw—4a
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Unconditional distribution of daily returns — 3

» Cumulative densities for different values of y, all with E[7*] = 1.
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» Left/right tails of empirical density similar 7?7 Yes
» Dow Jones daily returns: Sep—Dec 1929 / Sep—Dec 1987
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Unconditional distribution of daily returns — 4
» Other example: HSCEI index, 1993-2014
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=> Daily returns of equity indexes well captured by Student distribution
=> So far have looked at unconditional distribution — lumps together very different
volatility regimes.

> Write
= oiVotz E[zZ]=1

» Fat tails of r; due to randomness of o; 7

» Look at conditional distribution
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Conditional distribution of daily returns

ri = oiVot z;

» No easy acces to o; — unless intraday data available.
> Intrinsic noise of estimator of o; pollutes estimation of tails of z;

» Proxy for oj: 1-year realized vol

» Dow Jones: 1900-2014 again

-8 -7 -6 -5 -4 -3 -2 -1 0 \0 \1 2 3 4 5 6 7 8
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Student p=3.8 Student p=6
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2
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7 -3
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» 1 larger than in unconditional distribution: OK

=> Even accounting for randomness of volatility, daily returns are fat-tailed
=> z; markedly non-Gaussian = sizeable 1-day conditional smile

=> How does the 1-day conditional smile impact derivatives? °/23



SV model with conditional 1-day smile

» 1-day smile generates higher-order contributions to carry P&L, beyond gammas &
cross-gammas of spot/implied vols

=> Need SV model to assess impact of (unhedgeable) 1-day smile risk

> SV part of model sets o, i.e. scale of daily returns
» 1-day smile params govern 1-day conditional density

> ... while keeping (a) vols of (implied) vols, (b) covariances of spot & (implied) vols
unchanged.

» Start with 2-factor fwd variance workhorse

» Dynamics of inst. fwd variances &/ :2

der
575 = () a ((1 —@)e T=DguwX 1 Ge_k2(T—t)thY)
t
> Curve &/ a function of two OU processes X, Y;:
R

dX: = —ki Xedt + dWX  dY; = —ko Yedt + dW,Y

2 o« normalization factor: o = 1/\/(1 — 9)2 + 02 4+ 2pxy0 (1 —0) = VO'(fE) =2v 2> vol(y/&;) = v
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SV model — 1

» Process for S;:

dS; = (r — q)Scdt + \/ELS.dW?
(dW?dW™) = psxdt  (dW?dW") = psydt

=> Instantaneous vol of VS vol o1 of maturity T — for flat TS of VS vols:

vol(Fr) = v ay/(1 =02 12 (kT) + 0212 (ko T) + 2pxy 0 (1 — ) I (ka T) I (ko T)

1—e™%
I(x) = .

vol(or—g) = v

» Vol of ATMF vol ~ vol of VS vol

=> ATMF skew at order 1 in vol-of-vol for flat TS of VS vols:

kT —(1—efaT koT — (1 — e kT
T (1-eThT) | T = (1—e7hT)
(ki T) (ko T)

St = va [(1-0)psx
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SV model — 2

» Params 0, ki, k2, pxy ? ™ so that vol(c7) matches power-law benchmark

3m

(8%
vol(T 7 )Benchmark = 10 (T)

over range [ Tmin, Tmax]-

» Typically, @ = 0.4, vy = 60% (realized) / 100% (implied)
> Sets for a = 0.4, v9 = 100%, range [1m, 5y]

v 120.9% | 135.8% | 174.0% | 178.2% | 181.9% | 185.1% [ 190.1%
0 57.9% | 30.1% | 245% | 23.8% | 23.4% | 23.1% 22.8%
kq 0.58 2.59 5.35 6.02 6.65 7.26 8.34
k, 1.19 0.32 0.28 0.27 0.25 0.24 0.22
Pxy -95% -50% 0% 20% 40% 60% 99%

> No over-parametrization. Different sets = different short vol/long vol correlations

» Spot/factor correls psx, psy such that:

> Either generate given level & term-structure of covariances of spot & ATMF vols

» Or generate desired term structure of ATMF skew. Typically:
1
ST x - with ~ € [0.3,0.7], range [1m, 5y]
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SV model with conditional 1-day smile — 1

» Set time scale A = 1 day

» Fwd variances: simulate increments 6.X,0Y of OU processes X, Y

t+A t+A
5X = / e A= g X 5y = / e letFA=w gy Y
t t

» Spot increment:
Sein = St[l—l—(r—q)A n ataz}

t+A
or = A/ Eldr = 5 if A small

=> In standard 2F model

with

Sein = St[1—|—(r—q)A + at(SWS}
=> Here 0Z fat-tailed, no longer Gaussian
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SV model with conditional 1-day smile — 2

» 0Z: 2-sided Student distribution with params g, p—

» Histo. positive & negative returns ~ equally probable => 1-day ATM digital ~ %

» In model, want ability to set 1-day ATM skew at will

=> Introduce p*, p~: probabilities of positive/negative returns

60 = oiVA|X,,| with probability p,
6Z = —o_vVA|X,_| with probability p_

X,.: Student random variable with n degrees of freedom
> o4,0_ such that E[6Z] = 0, E[6Z°] = A

» Need to correlate 6Z with X,0Y
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SV model with conditional 1-day smile — 3

> Define function f that maps Brownian increment § W? into 6.Z:
5z (o)
VA VA

(X <N(;_1 (p-): f(x) = (- ”___2 ./\/;L__l (NG(X))

— 9 2p_

XN (o) F(x) = G/ N (L et =)

" = Het 2p4

» N¢: CDF of standard normal variable, Nc_l its inverse

> ./\/'M_l: inverse CDF of Student random variable with 1 degrees of freedom

» (T,( given by:

o = p—— = P+t
VP (P + p— (pras) VP (p—as Y + p_ (pras )
— r( XAt
with ay = —2 pe 2 ( 2 ) and likewise for a_

vrop+e—=1 0 T(5E)

=> Mapping function f built once and for all.
E[f(x)] =0 E[fF(x)]=1
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SV model with conditional 1-day smile — 4
» Now able to generate Z from Brownian increment SW?3: % — f (5W5)

» Last part of job: correlate §W?> with 6X, §Y
> Covariances E[0Z0X], E[6Z3Y] need to stay fixed
» In fat-tailed version of model, use correlations psy, psy such that:

E.[6Z6X] = E[6W’6X] likewise for E[6Z5Y]
53X = I(kiA)( psxSWS + ...) I(x) = 1=~

> Fat-tailed 2F model: 6X = [(kiA)( pEdW> + ...)

» Standard 2F model:

» Equate covariance of §X with 6Z,5W>:
E.[6Z (0 pixdWS)| = E[sWS (e psxsWS)| = o psxar

» Yields: .
Psx A . 1
- E[6ZSWS] _x2
psx [ ] f e\/% x f(x)dx

=> Rescaling of spot/vol correlations same for all factors:

Psy _ Psx > 1 (Cauchy-Schwarz) 16 /23

pPSsy PSX



SV model with conditional 1-day smile — 5

» Fait-tailed 2F model
> Standard simulation of 2 OU processes X, Y with correls pg,, p5y with Ww>.

» Spot simulation: no harder than in standard 2F model:

Sttn = St [(" — @)SeA + oV AS (5\/\/\/;) ]

=> Pricing time similar to 2F standard model — in practice o = \/&f

=> Can vary 1-day mile (i.e. f) while leaving dynamics of vols unchanged: vols of
implied vols, correls of spot & implied vols

> 1-day smile params only change conditional density of normalized daily returns

> Neither possible with jump/diffusion, nor with time-changed Lévy processes L,

» Conditional skewness & kurtosis fixed, correlation of spot and vols fixed

» Continuous limit of model ?? Depends on scaling of p™(A) — % and pu(A) as
A — 0.
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1-day smile

> Left: pyr = p_ = % Right: p+ # p—.
e = p—, or = 20%.

» Smile is obtained by numerical integration

—_— u=6 60% 7
=1 = =4
110%4 T=1day — =4 T=1day p
— g =3
:_25 50%
90% - o
40%
70% -
0, -
50% 30%
30% - 20%
10% . . . . 10% 70% 1 1 1
80 90 100 110 120 90 95 100 105 110

> p+, b+, i— do what they're supposed to do.
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Vanilla smile — 1
» Parameters of 2F model (typical of STOXX50 — July 2014)

Y
257%

)
15.1%

ky k,
8.96  0.46

Pxy
40%

Psx
-74.6%

Psy

-13.7%

» 3m and 1y smiles for different uy = u—, p+ = 0.5, VS vols flat at 20%.
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—

120

140

34% -

30%

26%

22%

18%

14% -

50
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T

=1y — 2F std
e 2F u=6
2F n=4
2F u=3

150

=

200

Std: standard 2F model — equivalent to u = oo

» Std 2F model diffusive: algos for quasi-real-time vanilla smile generation — see book

> Fat-tailed 2F model is not: really have to price (delta-hedged) call /put payoffs

=> 1-day smile has minute impact on vanilla near-ATM smile

=> 1-day smile impacts tails — mostly OTM calls (for equities)
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Vanilla smile — 2
» Impact of 1-day ATM digit. pu+ = u— = 4.

44% 7 T=3m p=4 34%

40%
30%
36%

32% 26%

28%

24% 22%

20% -
18%
16% | —— 60%

70%
12% \ \ \ 1 14%

60 80 100 120 140 50 100 150 200

» Scaling of 1-day skew contribution to 95/105 skew. Turn off stoch vol: v =0

2.0% -

u=4 p,=70% e Actual
— 1/Tfit
1.5% -

1.0% -

0.5% -

0.0%

0.0 0.5 1.0 15 2.0

=> Contribution of 1-day skew to vanilla ATM skew %: OK
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Example 1: Daily cliquets — Gap notes — Crash puts

>

>

Similar to CDS contract. Maturities 3m, 6m, 1y

Receive Put (90%, 80%, 75%) or Put spread (90%/80%, 85%/75%) payoff on
daily index returns

Pay quarterly spread, starting at inception. Expires when 1st Put/Put spread is
triggered

» No delta, some vega — almost pure 1-day smile payoff

Left: 1-day smile for different values of u_. uy =4, py = 0.5, vol = 20%
Right: upfront prices for 1-year 80% Crash Put — in basis points

130% -
T=1day p,=4 — 1 =6
110% — n=a
— =3
p_=2.5
90% n_=2.2
70% -
50% -
30% -
K. oo 6 4 3 2.5 2.2
10% | ‘ | ~v=0% 0 0 2 15 43 62
80 90 100 110 120  |v=257% 1 3 9 28 53 67

=> Market prices very conservative, correspond to implied value of p_ ~ 2.2

21/23




Example 2: Var swaps

» In(2£L)2: VS other instance of daily cliquet

S

> Assume no dividends. Consider position: short VS /long vanilla replication of
—21In S, delta-hedged

» Carry P&L cancels up to order 2 in §S.

> Contribution of higher orders = Gys # G ogswap

> (Ovs — OLogswap) for 1-year maturity, with /without stoch vol, for p; = %

" oo 6 4 3 p, 30% 40% 50%  60%

70%

v=0 0% 0% 0.02% 0.16% n=4, v=257% -0.11% 0% 0.10% 0.23%

0.40%

v=257% |0.02% 0.04% 0.10% 0.29%

> u=4, py = 2: relative mismatch Vs _1is ~ 0.10%/20% = 0.5%

O L ogswap

=> Direct backtesting on index returns? Slightly lower estimate:

1 (r*) :
5 ((2(e’ “1)—2n) — 1) r daily log-return

=> Conclusion: Gvs — Trogswap: Small impact of 1-day smile

=> Mostly impacted by dividend model
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Conclusion
» SV model with handle on 1-day smile

. while keeping break-even levels of vommas & vannas unchanged

ri = oiVot z;

» Fwd variance model: sets scale o; of daily returns
» Additional parameters govern 1-day smile: py, pu—, p+
» Simulation no harder than in std 2F model

» Allows assessment of 1-day smile risk on derivatives

» Unhedgeable risk we're carrying: needs to be priced conservatively

> Near-ATMF smile overwelmingly generated by covariance of spot and ATMF/VS
vols

dokT
din K

1 T Tt 5
_ dinS: d
. 283TT/0 7 (dInS: dory

=> 1-day smile impacts tails of vanilla smile — mostly OTM calls

=> Larger impact on path-dep payoffs referencing daily returns
» Daily cliquets
» Var swaps
» Capped VSs, absswaps ...
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